143 research outputs found

    Proteomic and functional analysis of NCS-1 binding proteins reveals novel signaling pathways required for inner ear development in zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The semicircular canals, a subdivision of the vestibular system of the vertebrate inner ear, function as sensors of angular acceleration. Little is currently known, however, regarding the underlying molecular mechanisms that govern the development of this intricate structure. Zebrafish represent a particularly tractable model system for the study of inner ear development. This is because the ear can be easily visualized during early embryogenesis, and both forward and reverse genetic techniques are available that can be applied to the discovery of novel genes that contribute to proper ear development. We have previously shown that in zebrafish, the calcium sensing molecule neuronal calcium sensor-1 (NCS-1) is required for semicircular canal formation. The function of NCS-1 in regulating semicircular canal formation has not yet been elucidated.</p> <p>Results</p> <p>We initiated a multistep functional proteomic strategy to identify neuronal calcium sensor-1 (NCS-1) binding partners (NBPs) that contribute to inner ear development in zebrafish. By performing a Y2H screen in combination with literature and database searches, we identified 10 human NBPs. BLAST searches of the zebrafish EST and genomic databases allowed us to clone zebrafish orthologs of each of the human NBPs. By investigating the expression profiles of zebrafish NBP mRNAs, we identified seven that were expressed in the developing inner ear and overlapped with the <it>ncs-1a </it>expression profile. GST pulldown experiments confirmed that selected NBPs interacted with NCS-1, while morpholino-mediated knockdown experiments demonstrated an essential role for <it>arf1</it>, <it>pi4kβ, dan</it>, and <it>pink1 </it>in semicircular canal formation.</p> <p>Conclusion</p> <p>Based on their functional profiles, the hypothesis is presented that Ncs-1a/Pi4kβ/Arf1 form a signaling pathway that regulates secretion of molecular components, including Dan and Bmp4, that are required for development of the vestibular apparatus. A second set of NBPs, consisting of Pink1, Hint2, and Slc25a25, are destined for localization in mitochondria. Our findings reveal a novel signalling pathway involved in development of the semicircular canal system, and suggest a previously unrecognized role for NCS-1 in mitochondrial function via its association with several mitochondrial proteins.</p

    Citizen science’s transformative impact on science, citizen empowerment and socio-political processes

    Get PDF
    Citizen science (CS) can foster transformative impact for science, citizen empowerment and socio-political processes. To unleash this impact, a clearer understanding of its current status and challenges for its development is needed. Using quantitative indicators developed in a collaborative stakeholder process, our study provides a comprehensive overview of the current status of CS in Germany, Austria and Switzerland. Our online survey with 340 responses focused on CS impact through (1) scientific practices, (2) participant learning and empowerment, and (3) socio-political processes. With regard to scientific impact, we found that data quality control is an established component of CS practice, while publication of CS data and results has not yet been achieved by all project coordinators (55%). Key benefits for citizen scientists were the experience of collective impact (“making a difference together with others”) as well as gaining new knowledge. For the citizen scientists’ learning outcomes, different forms of social learning, such as systematic feedback or personal mentoring, were essential. While the majority of respondents attributed an important value to CS for decision-making, only few were confident that CS data were indeed utilized as evidence by decision-makers. Based on these results, we recommend (1) that project coordinators and researchers strengthen scientific impact by fostering data management and publications, (2) that project coordinators and citizen scientists enhance participant impact by promoting social learning opportunities and (3) that project initiators and CS networks foster socio-political impact through early engagement with decision-makers and alignment with ongoing policy processes. In this way, CS can evolve its transformative impact

    Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study

    Get PDF
    Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Microdissection of Shoot Meristem Functional Domains

    Get PDF
    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize

    Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Protein-altering germline mutations implicate novel genes related to lung cancer development

    Get PDF
    Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio = 8.82, P = 1.18 × 10−15) and replication (adjusted OR = 2.93, P = 2.22 × 10−3) that is more pronounced in females (adjusted OR = 6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR = 2.61, P = 7.98 × 10−22) and replication datasets (adjusted OR = 1.55, P = 0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk

    Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Get PDF
    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer
    corecore