189 research outputs found

    Transforming the Archival Classroom for a Connected Reality

    Get PDF
    The Archival / Preservation Education SIG panel engages with interconnected external pressures and curricular goals in the archival classroom. Four moderated presentations focus on innovative classroom pedagogy, including modeling and visualizing collection data, the digital and physical interconnectedness of digitization activities in pre-professional training, and practical experience and deliverables with unique archival collections; presenters bring perspectives from three states and two countries. “Inclusive Collection Visualization and Arrangement” by Sarah Buchanan discusses the data practice of visualization as a creative response to archival arrangement and metrics for aggregating collection attributes. “Paradigm Shift in LIS Education from Digital Revolution to a Cyber-Physical System” by Najim Babalola examines how emerging and immersive information and communication technologies (ICT) such as digitization are changing service deliveries, with a view to preparing prospective professionals in Nigeria with knowledge and critical skills. “Closing Doors Opens Others: Exploring Pedagogical Opportunities through Temporary Custody of Records” by Katherine Wisser, Adam Kriesberg, and Sarah Pratt reviews how faculty, archives staff, and students across levels are processing and learning with the American Textile History Museum records, before eventual transfer to UMass Lowell. “Education to Support Language Data Archives and Preservation: Experiential Learning and Community Collaboration in the Interdisciplinary Graduate Course at University of North Texas” shares lessons learned in teaching a multi-modal, team-based, and experiential course with South Asian language materials and UNT Digital Collections

    Lorentz Invariant Superluminal Tunneling

    Get PDF
    It is shown that superluminal optical signalling is possible without violating Lorentz invariance and causality via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.Comment: 10 pages revtex, no figure, more discussions added, submitted to Phys. Rev.

    Reusable Copper Catechol‐based Porous Polymers for the Highly Efficient Heterogeneous Catalytic Oxidation of Secondary Alcohols

    Get PDF
    New catechol-based porous polymers were synthesized and used as platforms for the heterogenization of molecular Cu complexes. The resulting Cu@CatMP-1 materials proved to be highly stable and performing catalysts for the oxidation of secondary alcohols with turnover numbers up to 6000, about 1 to 2 orders of magnitude higher than the current relevant state of the art, using catalyst loadings as low as 25 ppm of Cu. The solid catalyst proved to be recyclable for over 10 runs without detectable metal leaching and has been scaled to the gram scale. The coordination of Cu to catechol within the polymer has been evidenced by X-ray absorption spectroscopy

    Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

    Get PDF
    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by biascorrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty

    A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    Get PDF
    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

    The effect of artificial selection on phenotypic plasticity in maize

    Get PDF
    Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements

    Direct Observation of Single Amyloid-ÎČ(1-40) Oligomers on Live Cells: Binding and Growth at Physiological Concentrations

    Get PDF
    Understanding how amyloid-ÎČ peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric AÎČ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high AÎČ concentrations required for most biochemical analyses, the metastable nature of AÎČ aggregates, and the complex variety of AÎČ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small AÎČ(1-40) oligomers bind to living neuroblastoma cells at physiological AÎČ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound AÎČ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound AÎČ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary AÎČ species that interact with neurons at physiological concentrations

    An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results
    • 

    corecore