129 research outputs found

    2-Octyl-cyanoacrylate for wound closure in cervical and lumbar spinal surgery

    Get PDF
    It is claimed that wound closure with 2-octyl-cyanoacrylate has the advantages that band-aids are not needed in the postoperative period, that the wound can get in contact with water and that removal of stitches is not required. This would substantially enhance patient comfort, especially in times of reduced in-hospital stays. Postoperative wound infection is a well-known complication in spinal surgery. The reported infection rates range between 0% and 12.7%. The question arises if the advantages of wound closure with 2-octyl-cyanoacrylate in spinal surgery are not surpassed by an increase in infection rate. This study has been conducted to identify the infection rate of spinal surgery if wound closure was done with 2-octyl-cyanoacrylate. A total of 235 patients with one- or two-level surgery at the cervical or lumbar spine were included in this prospective study. Their pre- and postoperative course was evaluated. Analysis included age, sex, body mass index, duration and level of operation, blood examinations, 6-week follow-up and analysis of preoperative risk factors. The data were compared to infection rates of similar surgeries found in a literature research and to a historical group of 503 patients who underwent wound closure with standard skin sutures after spine surgery. With the use of 2-octyl-cyanoacrylate, only one patient suffered from postoperative wound infection which accounts for a total infection rate of 0.43%. In the literature addressing infection rate after spine surgery, an average rate of 3.2% is reported. Infection rate was 2.2% in the historical control group. No risk factor could be identified which limited the usage of 2-octyl-cyanoacrylate. 2-Octyl-cyanoacrylate provides sufficient wound closure in spinal surgery and is associated with a low risk of postoperative wound infection

    Preterm low birthweight and the role of oral bacteria

    Get PDF
    Preterm and low birthweight (PTLBW) continues to be a major cause of mortality and morbidity across the world. In recent years, maternal periodontal disease has been implicated as a risk factor for adverse pregnancy outcomes. There is conflicting evidence to support such an outcome as illustrated by descriptive, case control and randomised controlled trials involving pregnant women from across the world, using different measurement tools to determine the level of periodontal disease. Whilst considering the literature, there is evidence for both arguments, based on the effect of periodontal inflammatory by products. Bacteria associated with periodontal disease are not dissimilar to those known to be associated with genito-urinary bacterial infections and adverse pregnancy outcomes. Several groups have demonstrated the apparent translocation of Fusobacterium nucleatum, Prevotella nigrescens, Prevotella intermedia, Porphyromonus gingivalis, Treponema denticola to the foetal placental unit whereby a maternal or foetal response has been detected resulting in premature birth or low birthweight. The normal process of parturition involves a cascade of events including a build-up of inflammatory mediators as linked to inflammation, whereby the maternal environment becomes hostile and threatens the well-being of the infant, and the foetus expelled. The question remains therefore, is there a greater risk of delivering a PTLBW infant when the mother has detectable periodontal disease, or is the release of inflammatory mediators and their translocation via the haematogenous route sufficient to induce a poor pregnancy outcome? The data investigated would suggest that there is a positive outcome when certain oral gram-negative bacteria create a cumulative effect sufficient to trigger early delivery, which represents the final straw to result in preterm or low birthweight delivery. There is equally sufficient epidemiological evidence that does not support this outcome, but it is agreed that maintaining oral health during pregnancy is beneficial to the mother and her infant

    Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate

    Get PDF
    Aim To decipher Europe-wide spatiotemporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70°N, 10°W‒35°E). Time period 1901‒2003. Major taxa studied Temperate and Euro-Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree-ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, Boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf-level gas exchange, inferred from indexed carbon isotope discrimination of tree-ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over up to 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60°N in continental Europe. A rise in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying drought impacts on tree performance. These effects are noticeable in drought-prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming-induced drought effects on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture-sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe-wide declines of forest carbon gain in the coming decades

    Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment

    Get PDF
    Understanding the co-occurrence of ecologically similar species remains a puzzling issue in community ecology. The species-rich mouse lemurs (Microcebus spec.) are distributed over nearly all remaining forest areas of Madagascar with a high variability in species distribution patterns. Locally, many congeneric species pairs seem to co-occur, but only little detailed information on spatial patterns is available. Here, we present the results of an intensive capture–mark–recapture study of sympatric Microcebus berthae and M. murinus populations that revealed small-scale mutual spatial exclusion. Nearest neighbour analysis indicated a spatial aggregation in Microcebus murinus but not in M. berthae. Although the diet of both species differed in proportions of food categories, they used the same food sources and had high feeding niche overlap. Also, forest structure related to the spatial distribution of main food sources did not explain spatial segregation because parts used by each species exclusively did not differ in density of trees, dead wood and lianas. We propose that life history trade-offs that result in species aggregation and a relative increase in the strength of intra-specific over inter-specific competition best explain the observed pattern of co-occurrence of ecologically similar congeneric Microcebus species

    Religious Tastes and Styles as Markers of Class Belonging: A Bourdieuian Perspective on Pentecostalism in South America

    Get PDF
    Studies on the relationship between social class and religion tend to highlight the demographic dimension of class, but neglect its symbolic dimension. By addressing the symbolic dimensions through a Bourdieuian approach, this article contends that religious tastes and styles can be employed as class markers within the sphere of religion. A case study on Argentinean Pentecostalism and in-depth analysis of a lower and middle class church illustrate how symbolic class differences are cultivated in the form of distinctive religious styles. While the lower class church displays a style marked by emotional expressiveness and the search for life improvement through spiritual practices, the middle class church performs a sober and calm style of Pentecostalism. The study highlights the role of styles in the reproduction of class boundaries, while shedding a critical light on the importance of tastes

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    The Neural Representation of Prospective Choice during Spatial Planning and Decisions

    Get PDF
    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments

    De Novo assembly and transcriptome analysis of the mediterranean fruit fly ceratitis capitata early embryos

    Get PDF
    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing geneticbased pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved
    • 

    corecore