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Abstract

We are remarkably adept at inferring the consequences of our actions, yet the neuronal

mechanisms that allow us to plan a sequence of novel choices remain unclear. We used

functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the

shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice

points. We observed two distinct anterior prefrontal responses to demanding choices at

the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior

frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices

and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding

choices at the second choice point. Furthermore, we identified hippocampal responses dur-

ing planning that correlated with subsequent choice accuracy and response time, particu-

larly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses

showed that coupling between the hippocampus and rd-mPFC increases during sequential

(deep versus shallow) planning and is higher before correct versus incorrect choices. In

short, using a naturalistic spatial planning paradigm, we reveal how the human brain repre-

sents sequential choices during planning without extensive training. Our data highlight a net-

work centred on the cortical midline and hippocampus that allows us to make prospective

choices while maintaining initial choices during planning in novel environments.

Author Summary

We are remarkably adept at inferring the consequences of our actions, even in novel situa-

tions. However, the neuronal mechanisms that allow us to plan a sequence of novel

choices remain a mystery. One hypothesis is that anterior prefrontal brain regions can

jump ahead from an initial decision to evaluate subsequent choices. Here, we examine

how the brain represents initial versus subsequent choices of varying difficulty during spa-

tial planning in novel environments. Specifically, participants visually searched for the

shortest path to a goal in pictures of novel mazes that contained one or two path junctions.

We monitored the participants’ brain activity during the task with functional magnetic
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resonance imaging (fMRI). We observed, in the anterior prefrontal brain, two distinct

responses to demanding choices at the second junction: one in the rostrodorsal medial

prefrontal cortex (rd-mPFC), which also signalled less demanding initial choices, and

another one in the lateral frontopolar cortex (lFPC), which was only engaged by demand-

ing choices at the second junction. Notably, interactions of the rd-mPFC with the hippo-

campus, a region associated with memory, increased when planning required extensive

deliberation and particularly when planning led to accurate choices. Our findings show

how humans can rapidly formulate a plan in novel environments. More broadly, these

data uncover potential neural mechanisms underlying how we make inferences about

states beyond a current subjective state.

Introduction

Goal-directed behaviour rests on being able to rapidly evaluate the potential consequences of

future actions. For example, consider the neuronal processing required for planning a new

route home when a road you normally take is closed. Although previous studies have implicated

anterior prefrontal regions in planning [1–5], it has been difficult to tease apart the relative con-

tributions of different prefrontal cortex (PFC) regions (i.e., rostral versus caudal or lateral versus

medial PFC) that respond to choices later in a sequence [6–7]. Moreover, the neural representa-

tion of how we rapidly make a series of novel choices remains unclear, because planning studies

generally rely on extensive learning about the outcomes of alternative choices [2–5,7].

Here, we ascertained whether different anterior PFC regions signal uncertainty about novel

sequential choices in a distinct manner during plan formation. Specifically, we were interested

whether rostrodorsal medial PFC (rd-mPFC), a brain region associated with imagining/simu-

lating potential choices [8–10], might be biased towards responding to choices later in a

sequence, even in the absence of prior learning about the consequences of choices.

We created a spatial planning task that would require little to no learning in which partici-

pants could call on an internal model of space deployed during exploration of the physical

world [11]. Our task required participants to choose the shortest route between a start and goal

location during functional magnetic resonance imaging (fMRI) scanning: participants viewed

one of 220 mazes with either two routes (shallow mazes) or four routes (deep mazes) to the

goal. Shallow mazes only had one choice point at the start location, whereas deep mazes also

offered a second choice point deeper into the maze. This design enabled us to see how responses

to plan formation were modified by the depth of prospection (i.e., the number of choice points)

and the uncertainty about those choices (i.e., the difference in lengths between the two available

paths from each choice point). After planning their route, participants were asked to make a

decision—at a specified choice point in a given maze—about the direction of the shortest path

(i.e., optimal choice) to the goal location. This gave us an additional measure (reaction time

[RT]) to quantify the uncertainty about a choice beyond the difference in available path lengths

(Fig 1A). As with shallow mazes, participants were only prompted to make one choice after see-

ing a deep maze, but until the choice point was highlighted, they did not know which choice

point (starting point or the choice point further in the maze) would be probed.

Results

Behaviour

Participants made correct choices 84.0% of the time (standard deviation [SD] = 5.13%; n = 29)

during the fMRI experiment, with an average RT of 492 ms (SD = 150 ms). In deep mazes,
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Fig 1. Task. (A) During a 3.25-s planning phase, participants had to infer the shortest path from the starting

point in maze (a red square) to the goal location (green square) and remember the chosen direction for each

choice point along the shortest path. Half of the mazes (shallow mazes) had two paths and only one choice point

(red square), whereas the other half (deep mazes) had four paths and two choice points (red square and

another point further in the maze). After 3.25 s, a choice point was highlighted (choice highlight) for 250 ms. The

highlighted location could either be the red square or the second choice point along the shortest path for deep

mazes. In shallow mazes, only the red starting location was highlighted. Crucially, for deep mazes, participants

were tested on one choice point before starting the next trial. Subsequently, the choice period featured a first-

person viewpoint of the highlighted location, where participants had a maximum of 1.5 s (Deep Maze mean:

~545 ms; Shallow Maze mean: ~440 ms) to choose the correct direction on the shortest path (left, forward, right,

or equal) with a button box. Immediately following the button press, an intertrial interval (ITI) screen appeared for

1.5 s before a new trial began. (B) Left: Example shallow maze trial with a large path length difference (less

demanding choice). Right: Example shallow maze trial with a small path length difference (demanding choice).

(C) Left: Example deep maze trial with a small path length difference (demanding) initial choice at the red square

and large (easy) path length difference at the second (prospective) choice point. Right: Example deep maze trial

with a large (easy) path length difference initial choice at the red square and small (demanding) path length

difference at the second (prospective) choice point. Deep mazes contained a combination of small, medium, or

large path length differences at first (initial) and second (prospective) choice points. (D) Overhead view (not
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when participants were prompted with choices that were at junctions deeper in the maze (i.e.,

the second/prospective choice point of a two choice sequence), they made correct choices 84.9%

(SD = 9.89%) of the time, with an average RT of 671 ms (SD = 172 ms). There was no significant

difference (t(28) = 1.84; p = 0.077; SD = 6.62%) in behavioural accuracy (percentage of correct

choices) between deep (mean = 85.2%; SD = 6.33%) and shallow trials (mean = 82.9%; SD =

5.88%). In contrast, there was a significant difference in RT (t(28) = 14.3; p< 0.001; SD = 39.3

ms), with greater RTs for deep (mean = 545 ms; SD = 148 ms) versus shallow trials (mean = 440

ms; SD = 152 ms). Notably, mean RTs were not correlated with accuracy across participants

(r = 0.257; p = 0.178).

Investigating the effect of path length differences on participant choice accuracy and RT in

deep mazes, we observed a significant interaction between initial (i.e., first choice point) and

prospective (i.e., at the second choice point) path length differences for both accuracy (F(2,27):

25.6; p< 0.001; Fig 2A) and RT (F(2,27): 11.4; p< 0.001; Fig 2B). There was a significant posi-

tive linear trend for accuracy and initial path length differences (F: 19.4; p< 0.001) but no

similar linear trend for RT (F: 0.18; p = 0.674). Notably, we observed positive and negative sig-

nificant linear trends with prospective path length differences for accuracy (F: 13.9; p = 0.001)

and RT (F: 7.5; p = 0.011), respectively.

In shallow mazes, we observed a significant main effect of path length difference for both

accuracy (F(2,27): 173.1; p< 0.001; Fig 2A) and RT (F(2,27): 52; p< 0.001; Fig 2B). As ex-

pected, there was a significant positive linear trend for accuracy (F: 354.6; p< 0.001) with

larger path length differences, whereas there was a significant negative trend with RT (F: 81;

p< 0.001; Fig 2). In deep mazes, accuracy was much lower when there were both small initial

and prospective path length differences (Fig 2A).

We then investigated the influence of path length differences at the initial choice point on

prospective choice behaviour. Unsurprisingly, when participants were prompted with the

prospective choice point, we observed a significant (p< 0.05) main effect of the prospective

choice path length difference (F(2,27): 6.57; p = 0.005; S1 Fig) on these choices and a linear

increase in accuracy with larger path length differences (F(2,27): 8.47; p = 0.007). However, we

found no significant difference in prospective choice accuracy when split by the initial path

length difference (F(2,27) = 0.887; p = 0.424; S1 Fig). Investigating prospective choice RT, we

observed a main effect of prospective choice RT based on the path length difference of the pro-

spective choice point (F(2,27) = 6.40; p = 0.005; S1 Fig) and also when split by the (unprobed)

initial path length difference (F(2,27) = 5.70; p = 0.009; S1 Fig). Similar to choice performance,

there was a negative linear trend for higher prospective choice point RT with smaller path

length differences at the prospective choice point (F(2,27) = 6.0; p = 0.021). However, we did

not observe a significant linear decrease in RT when we split prospective choice RTs by the

path length difference of the initial choice/starting point (F(2,27) = 3.1; p = 0.089). Taken

together, these results suggest that the path length difference of the initial choice did not affect

performance on prospective choices but did influence deliberation time (i.e., RT).

fMRI Analysis

To assess the impact of planning sequential choices with varying processing demands, we clas-

sified deep maze trials by the path length difference between the shortest path and the other

shown during the experiment) of three example mazes showing which path lengths contribute to each parametric

regressor in our fMRI analyses: initial (left), prospective (centre), and unchosen path length differences in deep

mazes. Initial path length differences in shallow mazes represent the difference between the only two available

paths. The black line highlights shortest path.

doi:10.1371/journal.pbio.1002588.g001
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paths separately (i.e., initial, prospective, and unchosen path length differences; see Fig 1D for

schematic of each path length comparison and S4 Table for list of regressors). Additionally, we

asked whether subsequent choice behaviour (RT and accuracy) as well as other aspects of the

planning task (e.g., the length of the shortest available path and whether the first or second

choice was prompted during deep maze trials) also explained brain activity during the plan-

ning phase. To summarize, we included the following parametric modulators for deep maze

Fig 2. Behavioural Results. (A) Accuracy during choice phase. Left: Significant interaction (p < 0.001) for initial versus prospective path length

differences in deep mazes. Deep mazes are split by small–small, small–medium, small–large, medium–small, medium–medium, medium–

large, large–small, large–medium, and large–large path length differences at the initial choice point (i.e., the shortest options for either choice

at the starting location) and the two available paths at the prospective choice point, respectively. Right: Significant positive linear trend in

accuracy (p < 0.001) with increasing path length differences for shallow mazes. Shallow mazes are split by small, medium, and large path length

differences. (B) Log RT during the choice phase. Left: Significant interaction (p < 0.001) for initial versus prospective path length differences in

deep mazes. Deep mazes are split by small–small, small–medium, small–large, medium–small, medium–medium, medium–large, large–small,

large–medium, and large–large path length differences at the initial choice point (i.e., the shortest options for either choice at the starting

location) and the two available paths at the prospective choice point, respectively. Right: Significant negative trend (p < 0.001) in log RT with

increasing path length differences in shallow mazes. Shallow mazes are split by small, medium, and large path length differences. See S1 Data

for participant data.

doi:10.1371/journal.pbio.1002588.g002
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trials: the path length difference between the two shortest paths present at the starting point

(Initial Path Length Difference), the path length difference at the optimal second choice point

(Prospective Path Length Difference), the path length difference between the longest/least via-

ble path in the initially unchosen direction and the shortest path (Unchosen Path Length Dif-

ference), participants’ subsequent log RT during the choice phase (Log RT), the length of the

shortest available path, whether participants answered the subsequent choice trial correctly or

not (Accuracy), and whether participants were prompted to make an initial or prospective

choice (Prompted Choice). Importantly, the same parametric modulators were included for

shallow maze trials except for Prospective Path Length Difference, Unchosen Path Length Dif-

ference, and Prompted Choice.

We only report clusters that survive family-wise error (FWE) correction for multiple com-

parisons (p< 0.05) at the statistical threshold of p< 0.005 uncorrected. The only exception is

in the hippocampus, where all reported activations contain a peak-voxel that survives

(p< 0.05) small-volume correction (SVC) for the bilateral hippocampus.

Prospective Path Length Difference

We first asked whether, during deep maze trials, there were fMRI responses specifically related

to inferences about the prospective choice point, i.e., blood-oxygen-level dependent (BOLD)

changes related to choosing between the two paths at the second choice point that were not

fully explained by path length differences at the initial choice point. We observed a very large

cluster peaking in dorsal anterior cingulate cortex/pre-supplementary motor area (dACC/

pSMA; x = 6; y = 23; z = 37; Z-score: 5.08; Fig 3) with a sub-peak extending into rd-mPFC; x =

−15; y = 38; z = 34; Z-score: 2.8; Fig 3) that responded to smaller prospective path length differ-

ences. Notably, there were also significant clusters in lateral frontopolar cortex (lFPC; x = −27;

y = 53; z = 4; Z-score: 3.86; Fig 3), posterior parietal cortex (PPC; x = 3; y = −73; z = 55; Z-

score: 4.41), left inferior temporal cortex (x = −57; y = −43; z = −17; Z-score: 3.68), and right

cerebellum (x = 30; y = −55; z = −26; Z-score: 3.73; S8 Table).

Given that the rd-mPFC activation was a small sub-peak in a very large cluster centred on

dACC/pSMA, we wanted to confirm whether there was truly a robust rd-mPFC signal selec-

tively related to planning prospective choices and whether this signal differed from the other

prefrontal responses observed in dACC/pSMA and lFPC. We therefore conducted a paired t
test comparing responses to prospective path length differences versus initial path length dif-

ferences in shallow mazes. We observed a significant rd-mPFC sub-peak (x = −15; y = 38;

z = 28; Z-score: 3.61; Fig 3D) that responded to smaller prospective versus initial path length

differences. The cluster covered the peak rd-mPFC voxel from the previous contrast and was

centred on left dorsolateral prefrontal cortex (dlPFC; x = −18; y = 17; z = 43; Z-score: 4.33; see

S2 Fig for images of dlPFC peak). Crucially, this cluster was much smaller than the previous

rd-mPFC result and did not include the dACC/pSMA region that responded to prospective

path length differences. Likewise, we observed no significant difference in lFPC responses to

smaller prospective versus initial path length differences. Of particular interest, the significant

effect in rd-mPFC was driven by its significant response to both large initial and smaller pro-

spective path length differences (Fig 3C)—a pattern that was not observed in lFPC or dACC/

pSMA.

The null result suggesting that lFPC does not respond to smaller prospective versus initial

path length differences in shallow mazes should be interpreted with caution. Our general linear

model (GLM) based on path length differences did not distinguish whether these fMRI results

were due to the number of paths or the depth of planning. Indeed, when using a Shannon

entropy model that compared RT-fitted uncertainty for prospective path length differences

Representation of Prospective Choices during Planning
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versus the absolute value of the difference between all four available paths lengths (see S1 Text

for details), we found that both rd-mPFC and lFPC selectively responded to prospective uncer-

tainty (S1 Text).

Fig 3. Prefrontal responses to prospective path length differences. (A) Regions significantly responding to smaller prospective path length

differences. Left: Coronal image showing rd-mPFC/superior frontal gyrus (SFG). Centre: Sagittal image showing dACC/pSMA. Right: Coronal

image showing left lFPC. (B) Pregenual anterior cingulate cortex/ventromedial PFC (pgACC/vmPFC) region significantly engaged by larger

prospective path length differences. (C) Effect size for an 8-mm sphere around the rd-mPFC/SFG (left), dACC/pSMA (centre), and left lFPC

(right) peak voxels that responded to smaller prospective path length differences displayed in A for three parametric modulators: initial (including

both deep and shallow mazes), prospective, and unchosen path length differences (mean ± standard error of the mean [SEM]). (D) Effect size for

an 8-mm sphere around the pgACC/vmPFC peak voxel that responded to larger prospective path length differences. For both C and D, asterisks

indicate a significant correlation (p < 0.05) with path length differences. A positive effect size represents a BOLD correlation with larger path length

differences, whereas a negative effect size represents a correlation with smaller path length differences. (E) Images centred on rd-mFPC peak in

A, which was the only region featured in a that significantly responded to decreasing prospective versus initial choice path length differences in

shallow mazes. All highlighted regions survived cluster-level FWE correction at p < 0.05 and are displayed at an uncorrected statistical threshold

of p < 0.005. Corresponding coordinate from the Montreal Neurological Institute (MNI) template image listed below each brain image. See S2

Data for individual effect size data.

doi:10.1371/journal.pbio.1002588.g003

Representation of Prospective Choices during Planning

PLOS Biology | DOI:10.1371/journal.pbio.1002588 January 12, 2017 7 / 26



In the reverse contrast, larger path length differences at the prospective choice point elicited

responses in pregenual anterior cingulate cortex/ventromedial PFC (pgACC/vmPFC; x = −3;

y = 38; z = −11; Z-score: 3.69; Fig 3B). Notably, this finding is in contrast to a model-based

analysis (see Supplemental Results, S1 Text) in which no parallel activation in pgACC/vmPFC

related to decreasing prospective uncertainty was observed. This is possibly due to the inclu-

sion of all path length differences and not just the two shortest paths available at either choice

point.

Initial Path Length Difference

We also examined whether in both deep and shallow planning trials there were regions that

responded to the difference between the two shortest path lengths available at the initial/first

choice point (See Fig 1D for illustration). We found that larger path length differences at the ini-

tial choice point elicited responses in the temporoparietal junction (TPJ)/angular gyrus, vmPFC

(S3 Fig), and posterior cingulate cortex (PCC; see S3 Fig and S7 Table). Notably, rd-mPFC

(t(28): 2.41; p = 0.023) but not lFPC (t(28): −0.468; p = 0.644; Fig 3C) significantly responded to

increasing initial path length differences (see Table 1 for rd-mPFC and lFPC t-values related to

other parametric regressor of interest). It is important to note that this vmPFC cluster only

responding to large initial path length differences (S3 Fig) is rostral and superior to the pgACC/

vmPFC cluster responding to both large initial and prospective path length differences.

Following our results related to larger path length differences, smaller path length differ-

ences at the first choice point elicited responses in the dACC/pSMA, along with right dlPFC,

anterior insula, and PPC (see S7 Table). The dissociation between regional responses increas-

ing and decreasing with initial path length differences reflects similar responses to larger versus

smaller reward prediction errors observed during value-guided choice [12–14].

Unchosen Path Length Difference

In a separate comparison, we examined responses to the difference between the shortest and the

least viable counterfactual/unchosen path (i.e., what regions corresponded to an exhaustive

search or pruning of all potential paths). We found that larger unchosen path length differences

engaged the right angular gyrus/TPJ (x = 51; y = −61; z = 25; Z-score: 5.98; Fig 4A and S9

Table), which was the strongest response we observed in any region relating to a path length dif-

ference regressor. Additionally, we found PCC (x = 12; y = −46; z = 37; Z-score: 4.93; Fig 4A)

and right striatum (x = 27; y = 8; z = 1; Z-score: 4.58; Fig 4A) responses related to larger uncho-

sen path length differences. Notably, in our Shannon Entropy model analysis, which did not

have a specific parametric regressor accounting for unchosen path length differences, we found

Table 1. rd-mPFC and lFPC responses to different parametric regressors.

rd-mPFC/SFG responses t-statistic (df = 28)

Subsequent Log RT 2.59*

Length of Shortest Path −2.88*

Performance −0.35

lFPC responses t-statistic (df = 28)

Subsequent Log RT 3.63*

Length of Shortest Path −3.00*

Performance 0.11

Asterisks signify p < .05; t > 2.05.

Abbreviations: df, degrees of freedom.

doi:10.1371/journal.pbio.1002588.t001
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that right angular gyrus/TPJ and PCC both significantly related to increasing prospective uncer-

tainty (Supplemental Results, S1 Text). Taken together, these analyses suggest that angular

gyrus and PCC prune unviable paths in deep mazes that afford demanding prospective choices.

Fig 4. fMRI activations related to unchosen path length difference. (A) Regions that significantly responded to

larger unchosen path length differences between the shortest and unchosen path. Top left: Sagittal image showing

posterior PCC. Top centre: Coronal image showing right striatum. Top right: Sagittal image showing right angular

gyrus. Bottom: Effect size for an 8-mm sphere around the PCC (left), right striatum (centre), and right angular gyrus

(right) regions that responded to larger unchosen length differences displayed in A, for three parametric modulators:

initial (deep and shallow mazes), prospective, and unchosen path length differences (mean ± SEM). Asterisks indicate

a significant correlation (p < 0.05) with path length differences. A positive effect size represents a positive BOLD

correlation with larger path length differences, whereas a negative effect size represents a correlation with smaller path

length differences. (B) dACC region significantly responding to smaller unchosen path length differences. All highlighted

regions survived cluster-level FWE correction at p < 0.05 and are displayed at an uncorrected statistical threshold of

p < 0.005. See S3 Data for individual effect sizes.

doi:10.1371/journal.pbio.1002588.g004
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In contrast, smaller unchosen path length differences engaged dACC (x = 9; y = 17; z = 34;

Z-score: 4.41; Fig 4B) and bilateral lateral occipital cortex (LOC; left: x = −24; y = −88; z = −4;

Z-score: 4.71; right: x = 27; y = −91; z = 10; Z-score: 5.1; S9 Table). Our post hoc region of

interest (ROI) analyses revealed that neither rd-mPFC (t(28): −0.19; p = 0.85) nor lFPC (t(28):

0.399; p = 0.693) significantly encoded the unchosen path, further suggesting that these regions

corresponded to rapid sequential inference but not necessarily an exhaustive search of all pos-

sible paths.

Subsequent RT

Asking whether other aspects of mazes (beyond path length differences) influenced neural

responses during planning, we investigated whether any fMRI signals during planning corre-

lated with subsequent RT during the choice phase. During planning, fMRI signals in an

extremely large portion of cortex—peaking in visual cortex—positively correlated with subse-

quent RT (S10 Table). The large visual cortical cluster also encompassed ventral temporal

regions extending into the bilateral posterior hippocampus (left: x = −27; y = −37; z = −11;

Z-score: 4.97; small-volume corrected (SVC) p< 0.001), peaking in the right hippocampus

(x = 24; y = −37; z = −8; Z-score: 5.0; SVC p< 0.001; Fig 5). Notably, the right posterior hippo-

campus peak showed a significantly stronger relationship with subsequent RT in deep versus

shallow maze trials (t(28) = 2.71; p = 0.011; Fig 5C).

We also observed similar significant responses in smaller clusters in middle temporal gyrus

and dACC (see S10 Table). Likewise, we observed significant (p< 0.05) positive correlations

with increased subsequent RT in right angular gyrus/TPJ (t(28) = 3.53; p = 0.002) and PCC (t

(28) = 3.01; p = 0.006) regions relating to larger unchosen path length differences, which pro-

vides additional evidence that these regions prune unviable paths during deep planning trials.

The only negative correlation with subsequent RT was in the insula extending into a large por-

tion of white matter (x = 27; y = −10; z = 10; Z-score: 4.72).

Length of Shortest Path

We investigated which regions responded to the distance of the shortest available path length

(i.e., whether the optimal path was distal or proximal to the goal location, irrespective of the

other available paths). We observed responses in inferior occipital cortex extending into right

posterior hippocampus (x = 33; y = −37; z = −8; Z-score; 4.79; SVC p< 0.001; Fig 5B) that cor-

related with increasing length of the shortest available path to the goal, along with dACC (S11

Table). Conversely, bilateral TPJ, pgACC/vmPFC, rd-mPFC, precuneous, posterior superior

temporal sulcus, and lateral PFC (see S4 Fig and S11 Table) correlated with decreasing distance

of the shortest available path length.

Accuracy

Further characterizing the functional contribution of different brain regions, we asked if the

responses of different regions during the planning phase related to whether participants subse-

quently made a correct or incorrect choice. We observed a left hippocampal activation (x =

−18; y = −13; z = −17; Z-score: 3.87; SVC p = 0.044; Fig 5A) that preceded correct choices with

a subthreshold activation in right anterior hippocampus. Additionally, bilateral cerebellum

and motor cortex activations during the planning phase related to correct choices (S12 Table).

However, the spatial extent of these performance results should be interpreted with caution,

because the hippocampal cluster extended into a large portion of white matter.

Conversely, there was a significant dACC/pSMA cluster (x = 6; y = 17; z = 49; Z-score: 6.89;

S5 Fig) that preceded subsequently incorrect choices, which was the strongest activation
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Fig 5. Hippocampal contributions to planning. (A) Coronal image showing higher left hippocampal activity (circled in blue) during

planning prior to correct versus incorrect choices. Subthreshold right hippocampal activity that was higher for correct choices is also

visible. (B) Sagittal image showing ventral temporal activity extending into right posterior hippocampus (circled in blue) that positively

correlated with the distance of the shortest route between the starting and goal location. (C) Top: Sagittal image showing posterior

right hippocampal activity during planning that positively correlated with subsequent log RT. Bottom: Effect size for an 8-mm sphere

around right posterior hippocampus peak voxel showing that the correlation with log RT is significantly higher (p < 0.05) for deep

versus shallow planning trials. All hippocampal peak voxels presented survive correction for multiple comparisons (p < 0.05) across

the whole hippocampal volume, but clusters are shown at p < 0.005 uncorrected for visualization purposes. (D) Top: Sagittal image

showing medial extent of rd-mPFC (peak voxel same as 3A) that exhibited increased functional connectivity with the right posterior

hippocampus in deep versus shallow maze planning trials. Bottom left: Effect size for an 8-mm sphere around rd-mPFC peak voxel

(mean ± SEM) showing significantly increased functional connectivity with hippocampus for deep versus shallow planning trials.

Bottom right: Hippocampal rd-mPFC functional connectivity (mean ± SEM) was significantly higher during deep planning trials prior to

correct versus incorrect choices. See S4 Data for individual effect sizes presented in 5C and 5D.

doi:10.1371/journal.pbio.1002588.g005
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observed in any contrast. We then tried to determine whether this response was feedback

related, because it could have been due to an unobserved choice point. However, we found no

significant difference between deep and shallow planning (t(28) = 1.32; p = 0.198; S5 Fig).

Likewise, adding a regressor encoding whether the initial or prospective choice point was

highlighted in deep mazes (Prompted Choice) did not modify the robustness of the dACC/

pSMA activation. Notably, we also observed significant clusters in bilateral anterior insula and

intraparietal sulcus (IPS) preceding incorrect choices (S12 Table).

Deep versus Shallow Planning Effects

Investigating whether any regions responded differently to initial path length differences in

deep versus shallow mazes, we found that a large cluster in PPC responded more strongly to

smaller initial path length differences in shallow versus deep mazes. Likewise, we also observed

smaller but significant clusters in premotor cortex (PMC) and dlPFC (S6 Fig and S13 Table).

We did not observe any other significant clusters responding to initial path length differences

in deep versus shallow mazes.

Next, we investigated whether during the planning phase there were any regions outside of

the hippocampus whose responses correlated with subsequent RT for deep versus shallow

planning trials differently. We found that visual cortex and right PMC correlated with increas-

ing RT more strongly during shallow planning trials (S6 Fig and S13 Table) but did not find

any other significant responses. When splitting responses to the length of the shortest path, we

observed that inferior temporal cortex and superior frontal gyrus (SFG) responded to longer

optimal path lengths more during deep versus shallow planning trials. Lastly, left LOC, left

PPC, and right IPS responses to incorrect choices were higher for shallow planning trials (see

S6 Fig and S13 Table).

Psychophysiological Interactions of the Hippocampus

We conducted a psychophysiological interaction (PPI) [15] analysis of whether the right poste-

rior hippocampal region (Fig 5C) relating to longer subsequent RT was coupled with rd-

mPFC as a function of planning depth (mazes affording single versus sequential choices). We

tested which regions exhibited increased coupling with hippocampus for deep versus shallow

maze planning trials. Taking an 8-mm sphere around the rd-mPFC peak that selectively

responded to smaller prospective path length differences (x = −15; y = 38; z = 34), we observed

significantly increased coupling between the hippocampus and rd-mPFC for deep versus shal-

low planning (t(28) = 2.69; p = 0.012; Fig 5D). Notably, the hippocampus coupled more

strongly with rd-mPFC than any brain region (peak voxel, x = 12; y = 47; z = 28; Z-score: 3.95;

in a separate cluster that did not survive FWE cluster correction p< 0.05 at the whole-brain

level). We did not observe any other significant clusters that coupled with the hippocampus

anywhere else in the brain for deep versus shallow planning.

To assess the functional relevance of hippocampal coupling with rd-mPFC during deep

planning, we conducted a separate GLM analysis splitting deep planning trials based on

whether the subsequent choice trial was answered correctly or not (see Supplemental Methods

in S1 Text for details of the GLM). We found that hippocampal coupling with rd-mPFC was

significantly higher for correct versus incorrect deep planning trials (t(28) = 3.04; p = 0.005;

Fig 5D).

Discussion

Using fMRI and a novel spatial planning paradigm, we examined how different brain regions

respond to prospective versus initial choices. We observed two prefrontal regions, lFPC and
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rd-mPFC, that responded to smaller prospective path length differences (i.e., demanding sec-

ond-step choices) during planning. Distinguishing the role of these two regions in planning

prospective choices, we found that rd-mPFC most strongly responded to deep mazes with

larger path length differences at initial/starting choice points and smaller path length differ-

ences at prospective choice points (Fig 4). In contrast, lFPC responded to smaller path length

differences at prospective choice points without any significant response related to initial path

length differences. Notably, we observed hippocampal signals that correlated with subsequent

choice accuracy and response time, particularly in mazes affording sequential choices. Addi-

tionally, we observed enhanced hippocampal functional connectivity with rd-mPFC during

deep maze planning that was higher prior to correct choices. In parallel, we found PCC and

angular gyrus responses relating to unchosen paths during sequential planning, whereas

vmPFC/pgACC activity related to larger initial and prospective path length differences. In

what follows, we relate our prospective spatial planning findings to the wider decision-making

literature and to the hippocampal and parietal signals we observed. We then speculate on

potential planning computations that might occur during our task.

The Role of rd-mPFC versus lFPC during Planning

Highlighting distinguishable contributions to prospective planning for medial versus lateral

anterior prefrontal regions, we find that rd-mPFC responds to difficult prospective choices

while maintaining easier initial choices, whereas lFPC responds to prospective path length dif-

ferences without being significantly modulated by initial path length differences. These find-

ings are in line with the perceived capacity of anterior PFC to exploit recent reward trends

during value-guided choice [16] and spatial navigation [2]. More specifically, our findings sug-

gest that rd-mPFC might be guiding computations related to chaining the whole sequence of

choices, whereas lFPC more exclusively relates to robust planning at the second, more pro-

spective choice point independent of the initial choice. Alternatively, when there are increased

computational demands at the initial choice point, rd-mPFC might deactivate when it is not

clear what the first step should be, allowing lFPC or dACC to take over more robust prospec-

tive planning. The ability of lFPC and dACC to help robustly compute second-step choices is

in line with previous findings related to counterfactual signals in FPC [6,17–18] and dACC sig-

nals related to strategic shifts in decision-making [19–20], along with the smaller unchosen

path length dACC signals presented here. Notably, our behavioural results showed initial

choice path length differences modulate subsequent RT during prospective choices but not

whether the choice was correct or not, which suggests more than one underlying computation

occurring related to prospective planning. Taken together with our anterior PFC findings,

these data broadly implicate at least two distinct anterior prefrontal computations when plan-

ning next-step choices in novel environments—one rapid and another more deliberative com-

putation related to prospective planning.

This lateral versus medial distinction parallels previous research on anterior PFC, where lat-

eral areas are believed to process stimulus-independent (i.e., counterfactual) information,

whereas medial areas are engaged by stimulus-oriented information [21]. Furthermore, pro-

spective choices responses in rostral mPFC were primarily dorsal, but the exact location of

responses was highly variable over participants, which may relate to the high anatomical vari-

ability between individuals in an evolutionarily complex region [1]. Still, our observation of

prospective planning responses throughout rostral mPFC is consistent with recent findings

showing that different populations in mPFC contribute to internal strategy shifts (see [22–24]

for human evidence and [25–28] for rodent evidence) and persistent activity in order to reeval-

uate sequential choices [29].
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Our result showing increased lateral FPC responses to prospective path length differences

might relate to the perceived function of FPC as a simultaneous evaluator of multiple options,

perhaps due to a higher sampling capacity (i.e., capable of maintaining more information) than

rd-mPFC. Simultaneous evaluation of multiple options is necessary whether a decision is a

sequential choice problem or not and is supported by the putative role of FPC in the rapid learn-

ing of novel abstract rules [30] and counterfactual choice [6,17,31]. Further work could focus

on the influence of working memory load or cognitive control on types of planning [32–34]

and how or whether different cognitive demands determine how a plan is formed or imple-

mented and which prefrontal structures (e.g., dACC versus lFPC or rd-mPFC) are engaged.

Hippocampal Responses during Spatial Planning

Decisions often rely on prospection during multi-step events in order to anticipate a potential

outcome, which is a process commonly linked with hippocampal-based memory ([7,35–37];

see [38] for review). Furthermore, spatial planning in novel environments is usually associated

with the use of a hippocampal-based internal model formed by exploration of the physical

world [11], yet corresponding evidence of hippocampal involvement during on the fly plan-

ning without extensive prior learning has been lacking. Here, we present evidence of posterior

hippocampal responses related to increased deliberation for novel sequential choices and ante-

rior hippocampal responses that relate to choice accuracy. Although our experiment is more

akin to a perceptual decision-making task than virtual navigation, our results are still consis-

tent with the role of the hippocampus during navigational planning [5,39–41]. More specifi-

cally, posterior hippocampal activity related to increasing distance between the start and goal

locations—along with higher right posterior hippocampal activity prior to longer choice RT in

deep mazes—helps link our spatial decision-making results to the putative role of the right

posterior hippocampus, which is thought to encode memory related to the spatial layout of an

environment [42–44].

In novel environments, posterior hippocampal functional connectivity with rd-mPFC

increased during deliberative planning for deep mazes and was highest before choice trials that

were answered correctly. Likewise, a recent fMRI study has shown increased anterior prefron-

tal coupling with the hippocampus during remembering and planning upcoming trajectories

to goal locations [5]. Oscillatory coupling between the posterior medial temporal lobe and ros-

trodorsal portions of mPFC has been observed during dynamic spatial imagery [45], and our

data add further support that coupling between these regions could relate to comparison of

novel choices with previous experience [38].

Notably, the hippocampus is also thought to play a key role in rapid incidental learning

[46–47]. Our anterior hippocampus activation related to spatial planning performance illus-

trates how the hippocampus can contribute to quick model-based inferences during tasks with

little to no learning. Yet it is still unclear how one-shot episodic learning might contribute to

hierarchical planning. Investigating the neural representations of novel decisions might help

uncover contextualization processes important for decision-making (e.g., chaining together

sequential choices as a single decision outcome) and episodic memory (e.g., chaining together

individual learned representations into a cohesive episode).

Potential Computations Underlying Plan Formation and Implementation

We have elaborated on the distributed neural responses that relate to rapid prospective plan-

ning, but the precise computations required for our task are unclear. One disadvantage of our

task is the inability to probe the time scale of plan formation and implementation in novel

environments, particularly when choice accuracy and RT are influenced differently by path
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length differences. Most planning studies test after extensive training and are biased towards

action-by-action evaluation without the need to maintain prior choices [3–4,48–50]. With

extensively trained choices, the neural computations leading to increased decision implementa-

tion/RT are well studied [51–52]. On the other hand, the anterior prefrontal regions selectively

responding to prospective uncertainty make evaluations that are more akin to rapid approxima-

tion of the best looking trajectory or jumping ahead to the most important sub-goal, which are

neural computations that have not been as well explored. Interestingly, this “jumping ahead”

process resembles computations that facilitate generalization between similar sequential states

(successor representations) during episodic learning [53–55] and also best-first forward search

models [56]. Exploring the interactions between the successor representation, time scales, and

heuristic pruning during plan formation could potentially help disclose the computations

underlying rapid and efficient multi-step planning in novel environments [57–59].

The Role of vmPFC and dACC during Spatial Planning

Given that our experiment does not separate responses related to plan formation and imple-

mentation, the role of the vmPFC and dACC in our task is unclear. We observed dACC/

pSMA responses related to an exhaustive comparison of path lengths (comparing the shortest

path with every other available path), with additional responses related to increased delibera-

tion, longer distance between starting and goal locations, and, most prominently, subsequently

incorrect choices. Taking into account the importance of the dACC in model updating [60–

61], it is not surprising that dACC responses would relate to uncertainty about potential trajec-

tories at different choice points. However, due to the poor temporal resolution of our task, it is

unclear whether dACC/pSMA responses are related to checking back on an uncertain initial

choice point [62], focusing on one choice point for an extended period of time [63], perfor-

mance monitoring [64], or increased cognitive control caused by difficult choices (see [61, 65]

for an in-depth discussion of the potential role of dACC in these behaviours).

In contrast with dACC, vmPFC responses did not relate to comparisons of all available path

lengths. Although subgenual portions of vmPFC responded to larger path length differences at

both initial and prospective choice points, we did not observe any vmPFC signals that corre-

lated with subsequently correct choices or quicker subsequent RT. A potential explanation for

this result could be that vmPFC initially helps locate task-relevant sub-goals and signals an

update of the current state [19,66].

Our findings also uncovered parietal responses that parallel activations observed in dACC

and vmPFC. Smaller path length differences at both initial and prospective choice points

engaged structures like PPC that have previously been implicated in value-guided decision-

making when there is surprise and/or time pressure [60,67]. Notably, in other areas of the pari-

etal lobe, right angular gyrus/TPJ and PCC responses during planning related to large initial

and unchosen path length differences but also correlated with increased subsequent choice

RT. One way to reconcile these seemingly contradictory results is that angular gyrus and PCC

might be responding to irrelevant paths that need to be pruned/ignored [68], which could

then help us suddenly proceed/shift [69–71] to a subsequent decision during planning. Plan-

ning studies informed by recent work investigating divisive normalization during multi-alter-

native choice [72] and dACC–PCC interactions when pursuing unlikely choices [20] can

potentially isolate the biophysical mechanism underlying pruning irrelevant alternatives dur-

ing sequential decision-making.

Notably, vmPFC, TPJ, and PCC responses to larger initial path length differences (i.e., cer-

tainty) overlap with a brain network commonly observed during value-guided choice [14,73].

Specifically, regions that increased with the precision of beliefs about choices overlap with
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regions that respond to reward differentials, i.e., greater value differences between chosen and

unchosen options during value-guided decision-making [12–13,74]. Likewise, PPC and

dACC/pSMA responses are also observed both during difficult value-guided choices (i.e.,

smaller value differences between chosen and unchosen options) [12,14,75] and smaller initial

path length differences. This suggests a similar mechanism guiding probabilistic choice in

both spatial and value-guided decision-making, regardless of whether an explicit reward, like

food or monetary gain, is present.

Internal World Models and Prospective Choice

We observed increased coupling between the hippocampus and rd-mPFC during sequential

plan formation that also predicted subsequent performance. Notably, resting-state fluctuations

in these same regions—along with angular gyrus and PCC—are also correlated and form the

default network [76–78]. Promising clues relating internal models of the physical world to rest-

ing default network fluctuations might come from investigating hippocampal sharp-wave rip-

ples: spontaneous oscillations that co-occur with the reactivation (and pre-activation) of

hippocampal place cell ensembles [79–83]. Indeed, a recent study in macaques has shown that

ripples selectively influence ongoing activity in the default network but not other resting-state

networks [84]. Additionally, reactivation of hippocampal representations of previously learned

goal locations has been observed during pre-navigational planning in familiar environments

in humans [5]. Despite these promising findings, further research is still necessary to deter-

mine whether endogenous hippocampal interactions with cortical midline regions reflect reac-

tivation/exploration of internal states in order to prepare decision-making networks for

upcoming novel choices [59,70,85–86].

Conclusion

We present a task adapted from rodent spatial navigation that enabled us to elucidate core

neural computations underlying our ability to make fast and robust multi-step inferences in

the absence of prior learning [85–87]. Our findings highlight a unique contribution of brain

regions that do not respond to an exhaustive search of possible options during planning like

caudal PFC and premotor regions but rather maintain current choices while planning subse-

quent choices. These data offer preliminary evidence of rapid heuristic-based computations in

rd-mPFC and the hippocampus during sequential planning that might further elucidate how

we make inferences about states beyond a current subjective state [88].

Materials and Methods

Participants

Thirty-four healthy adult participants performing the fMRI experiment gave informed written

consent and were studied and compensated (as approved by the local research ethics commit-

tee at University College London and in accordance with Declaration of Helsinki protocols).

Due to poor participant performance (answering less than 75% of trials correctly) in the fMRI

experiment, we removed five participants, leaving a final sample of 29 participants (14 female;

23.4 mean age in y; SD of 4.09 y). All participants were right-handed had normal or corrected-

to-normal vision and reported good health with no prior history of neurological disease.

Task

Stimuli were presented using the Cogent (http://www.vislab.ucl.ac.uk/cogent.php)

toolbox running in MATLAB (Mathworks, Natick, MA, USA). Over the course of 220 trials,
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participants viewed 220 different mazes from a slightly tilted (overhead) viewpoint and later

chose from first-person viewpoints within mazes generated using Blender (http://www.

blender.org). All mazes had a starting location (a red square) towards the bottom of the maze

and a goal location (a green square) further into the maze. Mazes differed by hierarchical

depth (number of paths to a goal location): there were 110 mazes with two possible routes

(shallow mazes) and 110 mazes with four possible routes (deep mazes).

In the scanner, participants were first presented with pictures of mazes of varying difficulty

(from our overhead viewpoint) and then asked to determine the shortest path from a starting

location (a red square) at the bottom of the screen to the goal location (a green square). The

overhead view appeared on the screen for 3.25 s, after which a location (choice point) along

the path was highlighted briefly for 250 ms with an orange circle. The choice point location

could either be the starting location or, if there were four paths to the goal location, a second

choice point. Crucially, participants would only have to make a decision about one choice

point for each trial. At any choice point, it was necessary to choose between two different

directions, which could be left, forward, or right, with an additional option to select equal, if

both routes were the same distance. No second choice points with two incorrect choices were

ever chosen, only a second choice point along the optimal path after the starting location could

be chosen (due to viewpoint constraints, only 47 choice points further were chosen versus

the initial starting point/red square, which was chosen 53 times). After the choice point was

highlighted, a “zoomed in” viewpoint of this location (always one square back and facing the

same direction as the overhead viewpoint) was presented. Depending on the possible direction

at the location, participants had less than 1,500 ms to decide whether to go left, forward, right,

or occasionally either direction. If no button press was made within 1,500 ms, the trial counted

as an incorrect trial and the experiment moved on to the 1500-ms intertrial interval (ITI)

phase. Participants never received any feedback or reward for making the correct choice. As

soon as participants chose a direction, the ITI phase of a trial began. Participants repeated this

trial sequence 110 times per session, for a total of two sessions. Sessions lasted approximately

10–15 min. Session order was counterbalanced between participants.

All participants completed a brief practice session consisting of 40 mazes/trials before the

experiment (on a laptop outside of the scanner). Deep mazes contained another branch/choice

between routes further in the maze, and the path length to reach the two choice points further

in the maze was always equal. Mazes had square tiled floors and were 8 x 8, 9 x 9, or 10 x 10

squares in total area. In shallow mazes, path length differences were split between 2, 4, and 6,

with one catch trial per session having equal path lengths. In deep mazes, path length differ-

ences were split between 2 (small difference), 4 (medium difference), or 6 (large difference)

squares (for an example, see square tiles in the mazes presented in Fig 1) for the two paths at

the starting location and a path length difference of 2, 4, or 6 squares at the optimal choice

point in the maze. There was one catch trial for deep and shallow mazes in each session, each

containing all equal path lengths (path length differences of 0). In sum, shallow trials could

either have path length difference of 2,4, and 6, while deep maze trials could be 2, 2; 2, 4; 2, 6;

4, 2; 4, 4; 4, 6; 6, 2; 6, 4; 6, 6; (e.g. 4, 2 would have a medium path length difference of 4 at the

starting location, whereas the second choice point would have a small path length difference of

2; see Fig 1C for examples).

fMRI Acquisition

Functional images were acquired on a 3T Siemens Trio scanner. BOLD T2�-weighted func-

tional images were acquired using a gradient-echo EPI pulse sequence acquired obliquely at

45˚ with the following parameters: repetition time, 3,360 ms; echo time, 30 ms; slice thickness,
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2 mm; inter-slice gap, 1 mm; in-plane resolution, 3 × 3 mm; field of view, 64 × 72 mm2; 48 slices

per volume. A field-map using a double echo FLASH sequence was recorded for distortion cor-

rection of the acquired EPI [89]. After the functional scans, a T1-weighted 3-D MDEFT struc-

tural image (1 mm3) was acquired to co-register and display the functional data.

fMRI Analysis

Functional images were processed and analysed using SPM8 (www.fil.ion.ucl.uk/spm). The

first five volumes were discarded to allow for T1 equilibration. Standard preprocessing

included correction for differences in slice acquisition timing, realignment/unwarping to cor-

rect for inter-scan movement, and normalization of the images to an EPI template (specific to

our sequence and scanner) that was aligned to the T1 Montreal Neurological Institute (MNI)

template. Finally, the normalized functional images were spatially smoothed with an isotropic

8-mm full-width half maximum Gaussian kernel. For the model described below, all regres-

sors, with the exception of six movement parameters of no interest, were convolved with the

SPM hemodynamic response function. Data were also high-pass filtered (cut-off period = 128

s). Statistical analyses were performed using a univariate GLM with a rapid event-related

experimental design.

GLM1 was based on path length differences (see task description for possible path length

differences): for the two shortest paths present at the starting point (Initial Path Length Differ-

ence), the path length difference between the shortest path and the longest unchosen path

length that was not available at the second choice point (Unchosen Path Length Difference),

the path length difference at the second choice point (Prospective Path Length Difference), log

RT for the subsequent decision phase (Log RT), length of the shortest available path (Length of

the Shortest Path), whether the participant made a correct choice during the subsequent choice

phase (Performance), and whether the first or second choice point was prompted for deep

maze trials (see Fig 1D for schematic showing the paths contributing to Initial Path Length

Difference, Prospective Path Length Difference, and Unchosen Differences). For shallow trial

regressors, there were only parametric regressors for Initial Path Length Difference, Log RT,

Length of the Shortest Path, and Performance. Inferences about the effects of uncertainty were

based upon t tests using the standard summary statistic approach for second-level random

effects analysis (see S1 Text for additional follow-up GLMs and corresponding results and S5

Table for a complete table of conditions and parametric regressors for each GLM).

We conducted a PPI analysis [15] to examine hippocampal coupling with rd-mPFC and the

rest of the brain during deep versus shallow planning trials. The group-level right posterior

hippocampus peak (x = 24, y = −37, z = −8) that correlated with increased RT served as a cen-

tre for the spherical region of interest (8-mm radius). The first eigenvariate from these ROIs

constituted the physiological variable. The psychological variable was the contrast vector rep-

resenting the task effect of deep versus shallow mazes. These regressors and their interaction

term were estimated at the first level. Contrast images associated with the PPI regressor were

then entered into a one-sample t test.

Post hoc statistical analyses were conducted using 8-mm radius spheres in MarsBar [90]

toolbox within SPM8 around the respective peak voxel specified in the GLM analysis. This

allowed us to compare the effects of different parametric regressors of interest (e.g., to deter-

mine whether a length of the shortest available path effect was present in a region defined by

an orthogonal main effect of prospective path length difference). This ensured we did not

make any biased inferences in our post hoc analyses.

Given the previously hypothesized role of the hippocampus in spatial planning, we report

whether hippocampal peak-voxels survive SVC for multiple comparisons (p< 0.05) based on
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a bilateral ROI of the hippocampus constructed using the SPM Anatomy toolbox [91–92].

For all analyses outside of the hippocampus, we report activations surviving an uncorrected

statistical threshold of p = 0.005 and cluster-level correction for multiple comparisons (FWE

p< 0.05), unless indicated otherwise. We also mention whether any significant clusters had a

very large cluster extent (k> 2,000), and the cluster extent for every significant effect is

reported in S7–13 Tables. Coordinates of brain regions are reported in MNI space. BOLD sig-

nal time courses in S5 Fig were plotted using the rfxplot toolbox [93].
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further in the maze. Left: Log RT for prospective choices split by whether there was a small,
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p< 0.005 uncorrected.

(PDF)
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S4 Fig. Responses to proximal shortest available path length. Images centred on rd-mPFC
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shortest available path).

(PDF)

S5 Fig. dACC activation during planning preceding incorrect choices. (A) Left: Sagittal

image showing dACC/pSMA activity during planning that was higher prior to incorrect versus

correct choice trials. Right: Effect size for an 8-mm sphere around the dACC/pSMA peak

voxel showing that there is no significant difference (p< 0.05) in the correlation with subse-

quently incorrect choices for deep versus shallow planning trials (mean ± SEM). Asterisks

indicate a significant correlation (p< 0.05) with path length differences. A negative effect

size represents a correlation with incorrect trials, whereas a positive effect size represents a
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S6 Fig. Deep versus shallow planning interactions. (A) Images centred on PPC region that

significantly responded to smaller initial path length differences in shallow versus deep mazes.

(B) Images centred on left PPC region that significantly responded to subsequently incorrect

choices in shallow versus deep mazes. (C) Images centred on right inferior temporal cortex
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versus shallow mazes.

(PDF)
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tion 1. The first and second columns report the model variant and the corresponding Bayesian

information criterion (BIC; summed across participants). A small BIC reflects greater (log)

model evidence.

(DOCX)

S2 Table. Shannon entropy values (H) by path length difference. Several models of RT were

compared using the BIC after penalizing for the number of parameters. A smaller BIC value

indicates that a model has higher evidence, after penalizing its accuracy for its complexity or

number of parameters.

(DOCX)

S3 Table. Mean probability of making the correct choice using our Shannon entropy

model.

(DOCX)

S4 Table. GLM1. Model-free regressors.
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S5 Table. GLM2. Shannon entropy model-based regressors.

(DOCX)

S6 Table. GLM3. PPI correct or incorrect choice regressors.

(DOCX)

S7 Table. Initial path length differences. List of peak voxels for clusters found in the initial

path length difference contrast. Please note that despite our stringent threshold (p< 0.005 acti-

vation threshold, cluster-based threshold p< 0.05), many of the activations are very large

(k> 2,000) and span multiple brain regions. Consequently, the labels assigned to each cluster

should be interpreted with caution.

(DOCX)

S8 Table. Prospective path length differences. List of peak voxels for clusters found in the

prospective path length difference contrast. Please note that despite our stringent threshold

(p< 0.005 activation threshold, cluster-based threshold p< 0.05), some activations are very

large (k> 2,000) and span multiple brain regions. Consequently, the labels assigned to each

cluster should be interpreted with caution.

(DOCX)

S9 Table. Unchosen path length differences. List of peak voxels for clusters found in the

Unchosen Path Length difference contrast.

(DOCX)
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ters found in subsequent choice RT contrast. Please note that despite our stringent threshold

(p< 0.005 activation threshold, cluster-based threshold p< 0.05), some activations are very
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(DOCX)
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S3 Data. Data underlying plots in Fig 4 (panel A).
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