16 research outputs found

    Impact of the first COVID lockdown on accident- and injury-related pediatric intensive care admissions in Germany - a multicenter study

    Get PDF
    Children’s and adolescents’ lives drastically changed during COVID lockdowns worldwide. To compare accident- and injury-related admissions to pediatric intensive care units (PICU) during the first German COVID lockdown with previous years, we conducted a retrospective multicenter study among 37 PICUs (21.5% of German PICU capacities). A total of 1444 admissions after accidents or injuries during the first lockdown period and matched periods of 2017–2019 were reported and standardized morbidity ratios (SMR) were calculated. Total PICU admissions due to accidents/injuries declined from an average of 366 to 346 (SMR 0.95 (CI 0.85–1.05)). Admissions with trauma increased from 196 to 212 (1.07 (0.93–1.23). Traffic accidents and school/kindergarten accidents decreased (0.77 (0.57–1.02 and 0.26 (0.05–0.75)), whereas household and leisure accidents increased (1.33 (1.06–1.66) and 1.34 (1.06–1.67)). Less neurosurgeries and more visceral surgeries were performed (0.69 (0.38–1.16) and 2.09 (1.19–3.39)). Non-accidental non-suicidal injuries declined (0.73 (0.42–1.17)). Suicide attempts increased in adolescent boys (1.38 (0.51–3.02)), but decreased in adolescent girls (0.56 (0.32–0.79)). In summary, changed trauma mechanisms entailed different surgeries compared to previous years. We found no evidence for an increase in child abuse cases requiring intensive care. The increase in suicide attempts among boys demands investigation

    Đ€ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” ŃĐŒĐŸŃ†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐč ĐșŃƒĐ»ŃŒŃ‚ŃƒŃ€Ń‹ ĐșĐ°Đș ĐșĐŸĐŒĐżĐŸĐœĐ”ĐœŃ‚Đ° ĐžĐœĐœĐŸĐČĐ°Ń†ĐžĐŸĐœĐœĐŸĐč ĐșŃƒĐ»ŃŒŃ‚ŃƒŃ€Ń‹ ŃŃ‚ŃƒĐŽĐ”ĐœŃ‚ĐŸĐČ

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness

    Get PDF
    Humans are social animals that experience intense suffering when they perceive a lack of social connection. Modern societies are experiencing an epidemic of loneliness. Although the experience of loneliness is universally human, some people report experiencing greater loneliness than others. Loneliness is more strongly associated with mortality than obesity, emphasizing the need to understand the nature of the relationship between loneliness and health. Although it is intuitive that circumstantial factors such as marital status and age influence loneliness, there is also compelling evidence of a genetic predisposition toward loneliness. To better understand the genetic architecture of loneliness and its relationship with associated outcomes, we extended the genome-wide association study meta-analysis of loneliness to 511 280 subjects, and detect 19 significant genetic variants from 16 loci, including four novel loci, as well as 58 significantly associated genes. We investigated the genetic overlap with a wide range of physical and mental health traits by computing genetic correlations and by building loneliness polygenic scores in an independent sample of 18 498 individuals with EHR data to conduct a PheWAS with. A genetic predisposition toward loneliness was associated with cardiovascular, psychiatric, and metabolic disorders and triglycerides and high-density lipoproteins. Mendelian randomization analyses showed evidence of a causal, increasing, the effect of both BMI and body fat on loneliness. Our results provide a framework for future studies of the genetic basis of loneliness and its relationship to mental and physical health

    Beyond the Credibility of Electronic Word of Mouth: Exploring eWOM Adoption on Social Networking Sites from Affective and Curiosity Perspectives

    No full text
    [[abstract]]Social networking sites (SNSs) are one of the Web 2.0’s most utilized services, and the influential force of electronic word of mouth (eWOM) on SNSs deserves our unequivocal attention. This study aims to explore how users of SNSs adopt information embedded in eWOM reviews shared by other users. Using the stimulus-organism-response model and affect-as-information theory, we devised and tested a theoretical framework linking both a cognitive path and an affective path to approach eWOM adoption on SNSs. Two curiosity constructs—informational deprivation epistemic curiosity (D‑EC) and interest-type epistemic curiosity (I‑EC)—are regarded as moderators of the cognitive path and the affective path, respectively. Data collected from 445 respondents support all of our hypotheses. The results show that beyond the conventional cognitive path (cognitive stimuli and the credibility of eWOM), the affective path (affective stimuli and arousal) can also contribute to eWOM adoption. We also find that SNS users focus on different stimuli of SNSs, depending on their levels of D‑EC and I‑EC. Our findings provide new perspectives to SNS designers and users on how to manage eWOM reviews on SNSs.[[notice]]èŁœæ­ŁćźŒç•ą[[journaltype]]ćœ‹ć€–[[incitationindex]]SSCI[[ispeerreviewed]]Y[[booktype]]é›»ć­ç‰ˆ[[booktype]]çŽ™æœŹ[[countrycodes]]US

    Meta-analysis of genome-wide association for migraine in six population-based European cohorts

    Get PDF
    Stress-related psychiatric disorders across the life spa

    Directional dominance on stature and cognition in diverse human populations

    No full text
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders(1), and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness(2). However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power(3,4). Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 x 10(-300), 2.1 x 10(-6), 2.5 x 10(-10) and 1.8 x 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples(5,6), no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection(7), this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    corecore