123 research outputs found
First Observation of Coherent Production in Neutrino Nucleus Interactions with 2 GeV
The MiniBooNE experiment at Fermilab has amassed the largest sample to date
of s produced in neutral current (NC) neutrino-nucleus interactions at
low energy. This paper reports a measurement of the momentum distribution of
s produced in mineral oil (CH) and the first observation of coherent
production below 2 GeV. In the forward direction, the yield of events
observed above the expectation for resonant production is attributed primarily
to coherent production off carbon, but may also include a small contribution
from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino
flux, the sum of the NC coherent and diffractive modes is found to be (19.5
1.1 (stat) 2.5 (sys))% of all exclusive NC production at
MiniBooNE. These measurements are of immediate utility because they quantify an
important background to MiniBooNE's search for
oscillations.Comment: Submitted to Phys. Lett.
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses
The sidereal time dependence of MiniBooNE electron neutrino and anti-electron
neutrino appearance data are analyzed to search for evidence of Lorentz and CPT
violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino
and anti-electron neutrino appearance data are compatible with the null
sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit
with a Lorentz-violating oscillation model derived from the Standard Model
Extension (SME) to describe any excess events over background, we find that the
electron neutrino appearance data prefer a sidereal time-independent solution,
and the anti-electron neutrino appearance data slightly prefer a sidereal
time-dependent solution. Limits of order 10E-20 GeV are placed on combinations
of SME coefficients. These limits give the best limits on certain SME
coefficients for muon neutrino to electron neutrino and anti-muon neutrino to
anti-electron neutrino oscillations. The fit values and limits of combinations
of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters
Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water
We report the first search result for the flux of astrophysical electron
antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande
(SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water
of the SK detector in order to detect neutrons more efficiently. In this new
experimental phase, SK-Gd, we can search for electron antineutrinos via inverse
beta decay with efficient background rejection and higher signal efficiency
thanks to the high efficiency of the neutron tagging technique. In this paper,
we report the result for the initial stage of SK-Gd with a exposure at 0.01% Gd mass concentration. No significant excess
over the expected background in the observed events is found for the neutrino
energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90%
confidence level. The limits and sensitivities are already comparable with the
previous SK result with pure-water () owing
to the enhanced neutron tagging
Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline
A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified
by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations
was performed using the T2K on-axis near detector. Two complementary methods were used in this study,
both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms
from the Standard Model extension have been derived by taking into account their correlations in this
model for the first time. These results imply such symmetry violations are suppressed by a factor of more
than 10 20 at the GeV scale
Volume I. Introduction to DUNE
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology
Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01% gadolinium-loaded water
We report the first search result for the flux of astrophysical electron antineutrinos for energies (10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In 2020 June, gadolinium was introduced to the ultrapure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd, during 2020 August 26, and 2022 June 1 with a 22.5 × 552 kton · day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure water (22.5 × 2970 kton · day) owing to the enhanced neutron tagging. Operation with Gd increased to 0.03% started in 2022 June.DE-SC0015628 - Department of Energyhttp://10.0.15.7/2041-8213/acdc9
Search for Neutrinos in Super-Kamiokande Associated with the GW170817 Neutron-star Merger
We report the results of a neutrino search in Super-Kamiokande (SK) for coincident signals with the first detected gravitational wave (GW) produced by a binary neutron-star merger, GW170817, which was followed by a short gamma-ray burst, GRB170817A, and a kilonova/macronova. We searched for coincident neutrino events in the range from 3.5 MeV to ~100 PeV, in a time window ±500 s around the gravitational wave detection time, as well as during a 14-day period after the detection. No significant neutrino signal was observed for either time window. We calculated 90% confidence level upper limits on the neutrino fluence for GW170817. From the upward-going-muon events in the energy region above 1.6 GeV, the neutrino fluence limit is () cm−2 for muon neutrinos (muon antineutrinos), with an error range of ±5° around the zenith angle of NGC4993, and the energy spectrum is under the assumption of an index of −2. The fluence limit for neutrino energies less than 100 MeV, for which the emission mechanism would be different than for higher-energy neutrinos, is also calculated. It is 6.6 × 107 cm−2 for anti-electron neutrinos under the assumption of a Fermi–Dirac spectrum with average energy of 20 MeV
Search for nucleon decay into charged antilepton plus meson in 0.316 megaton . years exposure of the Super-Kamiokande water Cherenkov detector
We have searched for proton decays into a charged antilepton (e+, μ+) plus a meson (η, ρ0, ω) and for neutron decays into a charged antilepton (e+, μ+) plus a meson (π−, ρ−) using Super-Kamiokande I-IV data, corresponding to 0.316 megaton⋅years of exposure. This measurement updates the previous published result by using 2.26 times more data and improved analysis methods. No significant evidence for nucleon decay is observed and lower limits on the partial lifetime of the nucleon are obtained. The limits range from 3×1031 to 1×1034 years at 90% confidence level, depending on the decay mode
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search
for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible
energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is
observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center
and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced
from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter
from the Galactic center or the Sun interacting in a terrestrial detector
- …