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Abstract

We report the first search result for the flux of astrophysical electron antineutrinos for energies ( ) 10 MeV in the
gadolinium-loaded Super-Kamiokande (SK) detector. In 2020 June, gadolinium was introduced to the ultrapure
water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we
can search for electron antineutrinos via inverse beta decay with efficient background rejection thanks to the high
efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd, during
2020 August 26, and 2022 June 1 with a 22.5× 552 kton · day exposure at 0.01% Gd mass concentration. No
significant excess over the expected background in the observed events is found for the neutrino energies below
31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are
already comparable with the previous SK result with pure water (22.5× 2970 kton · day) owing to the enhanced
neutron tagging. Operation with Gd increased to 0.03% started in 2022 June.

Unified Astronomy Thesaurus concepts: Supernova neutrinos (1666); Neutrino astronomy (1100)

1. Introduction

Astrophysical electron antineutrinos (n̄e) are a unique probe

to assess various physical phenomena in the universe, such as

past supernovae (Beacom 2010), resonant spin flavor preces-

sion (RSFP) of solar neutrinos (Akhmedov & Pulido 2003;

Díaz et al. 2009), and the annihilation of MeV-scale light dark

matter (Palomares-Ruiz & Pascoli 2008), which are expected to

appear at energies ( ) 10 MeV.
The core-collapse supernova (CCSN) is one of the transient

processes with the highest neutrino production in our universe.

A neutrino observation from CCSN has occurred only once so

far, from the supernova SN1987A, by the Kamiokande (Hirata

et al. 1987), IMB (Bionta et al. 1987), and Baksan (Alekseev

et al. 1987) neutrino detectors. Although nearby CCSNe are
rare, neutrinos from all past supernovae (diffuse supernova
neutrino background, DSNB) should exist around us. The
theoretical expectations for the DSNB flux depend on various
parameters: the supernova rate introduced from the cosmic star
formation rate depending on the redshift, the neutrino mass
ordering, the equations of states for remnant neutron stars, the
metallicity of the galaxy, the failed supernova rate, and the
binary interaction effect of stars (Hartmann & Woosley 1997;
Malaney 1997; Kaplinghat et al. 2000; Ando et al. 2003;
Ando 2005; Horiuchi et al. 2009; Lunardini 2009; Galais et al.
2010; Nakazato et al. 2015; Horiuchi et al. 2018, 2021; Kresse
et al. 2021; Tabrizi & Horiuchi 2021; Ekanger et al. 2022).
Ashida & Nakazato (2022) have investigated the fraction for
the failed CCSNe forming black holes from the DSNB flux
upper limit.
The Sun is one of the most intense astrophysical electron

neutrino sources at Earth. The solar n̄e can be produced by the
combination of the Mikheyev–Smirnov–Wolfenstein (MSW)

effect (Smirnov 2005) and the RSFP effect via the neutrino
magnetic moment. The limit for the neutrino–antineutrino
conversion probability ¯n nP

e e
of solar neutrinos due to RSFP

was placed from the n̄e flux upper limit by Agostini et al. (2021)

56
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and Abe et al. (2022a, 2022c). In addition, a small flux of the n̄e
from the Sun, via the beta decay of 40K, 238U, and 232Th, is
predicted by Malaney et al. (1990), but also has not been
observed yet.

Neutrino production from self-annihilation of MeV-scale
light-dark-matter particles (χχ→ νν) is also predicted
(Argüelles et al. 2021). An upper limit on the averaged cross
section for the self-annihilation of the light dark matter is
placed from the n̄e flux upper limit by Abe et al. (2022c).

Although neutrino detectors worldwide have been searching
for these events, no significant signal has been found so far.
The most stringent upper limits for the astrophysical n̄e flux are
set by Super-Kamiokande above 13.3 MeV (Abe et al. 2021)
and by KamLAND experiment below 13.3 MeV (Abe et al.
2022c). For further lower-energy regions, the Borexino
experiment (Agostini et al. 2021) gave the lowest upper limit
below 8.3 MeV. In this paper, we present a new search for
astrophysical n̄e in the neutrino energy range of 9.3 to
31.3 MeV based on the observation made with the new
Super-Kamiokande detector configuration.

2. The Super-Kamiokande Experiment

Super-Kamiokande (SK; Fukuda et al. 2003) is a water-
Cherenkov detector experiment located 1000 m underground in
Kamioka, Japan. The detector is of cylindrical shape inside a
tank with a diameter of 39.3 m and a height of 41.4 m. It is
currently filled with 50 kton of gadolinium-doped ultrapure
water (Abe et al. 2022b) as a target. It is optically separated into
a main cylindrical volume (inner detector, ID), surrounded by
the outer detector (OD) that extends up to the inner surface of
the SK tank. SK observes signals of neutrino interactions via
the detection of Cherenkov light produced by charged particles
within the ID using the ID PMTs. The ID is 33.8 m in diameter
and 36.2 m in height, with 11,129 20 inch photomultiplier
tubes (PMTs) mounted pointing inwards to the inside of the ID
tank. SK is sensitive to neutrinos with an energy range from
several MeV to above 1 TeV.

The OD is concentrically placed outside the ID; it is about
2 m wide. It is instrumented with 1885 8 inch PMTs that are
mounted on the outer side of the ID structure pointing
outwards. The OD surface is covered by white Tyvek sheet
to enhance the light reflection in the OD. The OD is primarily
utilized to veto cosmic-ray muons.

Since the start of SK operation in 1996, several upgrades to
the detector have been carried out. Notably, the electronics
were upgraded in 2008 (Yamada et al. 2010) allowing the
implementation of a new event trigger, super high energy
(SHE), to identify events above ∼6MeV. In addition, the
upgrade enables us to record all PMT hits within 535 μs after
the SHE-triggered event. The period for which the SHE trigger
was implemented is called “SK-IV,” and it operated until 2018.

In general, the triggers are issued using the number of ID or
OD PMT hits within a 200 ns window. For the SHE trigger, the
threshold is typically 60 ID PMT hits. The threshold for the OD
trigger is typically 22 OD PMT hits.

Another important upgrade was the loading of Gd into the
ultrapure water of SK in order to improve neutron-tagging
efficiency due to Gd’s high neutron-capture cross section and
enhanced neutron-capture signal. The original idea was
proposed by Beacom & Vagins (2004), and the loading was
carried out starting in 2020 July. After dissolving gadolinium-
sulfate-octahydrate ( ) ·Gd SO 8H O2 4 3 2 in the ultrapure water

(Abe et al. 2022b), the SK experiment started a new phase
called SK-Gd. The initial running period of SK-Gd is called
“SK-VI”; it operated with 0.011% Gd mass concentration until
2022 June. Under this condition, about 50% of neutrons are
captured by the Gd with a typical time constant of 115 μs.
Thermal neutron capture on Gd results in multiple gamma-ray
emissions with a total energy of about 8 MeV, which can be
easily distinguished from the random backgrounds from natural
radioactivity and PMT dark noise. In this paper, 552.2 days of
live time taken during SK-VI from 2020 August to 2022 June
is used for the n̄e signal search.

3. Event Selection

In this analysis, inverse beta decay (IBD; n̄ +  ++p e ne )

signals from the astrophysical neutrinos are investigated. The
signals consist of a positron-like event (prompt event) and a
subsequent delayed neutron (delayed signal). We search for
IBD signals in the data with the SHE-triggered and successfully
recorded 535 μs event from the signal energy region of
7.5–29.5 MeV for the reconstructed kinetic energy of prompt
events (Erec). In addition, the condition that the OD trigger is
not issued is also required in order to remove incoming cosmic-
ray muon events.
The event selection and reconstruction follow the previous

SK-IV search (Abe et al. 2021), except for the delayed neutron
identification. Prompt events with exactly one delayed-tagged
neutron signal are selected as IBD signal candidates. Those
neutron signals are searched for within a 535 μs window after
the prompt event. In SK-Gd, the neutron signal from thermal
neutron capture on the Gd nucleus is efficiently tagged by a
simple signal selection without using the machine-learning-
based cut used in previous analysis (Abe et al. 2021).
As a primary selection, an algorithm searching for PMT hit

clusters within 200 ns windows is applied. In this stage, the
clusters with 25 hits or more are selected as candidates for
neutron signals. Then, basic event reduction cuts, used in
common with the analysis for the ( ) 10 MeV scale in SK, are
applied. The cuts include the goodness of reconstruction, the
electron likeness of the Cherenkov ring hit pattern, and the
fiducial volume cut that requires the event to be further than
2 m from the wall.
For further reduction, we apply a “distance” cut and an

“energy” cut. The reconstructed vertex of the delayed signal
tends to be close to the prompt event for the IBD interactions of

( ) 10 MeV neutrinos. Thus the distance between the prompt
and delayed signal candidate is an efficient discriminator to
select neutron events. In this analysis, the candidates that have
a distance of over 3 m from the prompt event vertex are
eliminated. Also, the reconstructed energy of multiple gamma-
ray events from Gd capture is typically around 4–5MeV, as
shown in Harada (2022). After the 3 m distance cut, the
remaining background events are low-energy accidental back-
grounds due to noise hits. Hence a 3.5MeV energy threshold is
assigned in order to reduce the accidental coincidence rate
to ( )- 10 per event4 .
Neutron tagging efficiency and the misidentification prob-

ability are estimated by applying the above selection procedure
to neutron signals simulated by a Monte Carlo (MC) simulation
based on Geant4.10.5p1 (Allison et al. 2006), and SK random
trigger data, respectively. The Gd concentration in the MC
simulation is tuned to reproduce the time constant of the
measured data. For the gamma-ray emission from thermal

3
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neutron capture on Gd in MC simulation, the ANNRI-Gd
model (Hagiwara et al. 2019; Tanaka et al. 2020) is utilized.
The selection efficiency of the Gd capture signal is evaluated to
be 73.2%± 0.2%. Given that the capture fraction on Gd is
47.8%± 0.2% and systematic uncertainty estimated based on
Harada (2022), the total neutron tagging efficiency is estimated
to be 35%.6± 2.5%. The misidentification probability of noise
candidates εmis is found to be (2.8± 0.1)× 10−4 per event. It is
sufficiently low to remove most accidental coincidences. In the
previous analysis (Abe et al. 2021), typical neutron tagging
efficiency and the misidentification probability using a boosted
decision tree (Chen & Guestrin 2016) were about 20% and also

( )- 10 4 , respectively.
Figure 1 shows the total IBD signal efficiency for each

2MeV Erec bin. The efficiencies after each of the main
selection criteria applied are shown together.

The signal efficiency after neutron tagging (the red line in
Figure 1) is about twice that of the previous SK search (shown
in the upper panel of Figure 18 in Abe et al. 2021), especially
below 15.49MeV, thanks to the higher neutron detection
efficiency.

A large part of the accidental coincidence background
originates from pairs of events from the decay of isotopes
produced by muon spallation induced by the cosmic-ray muon
and the low-energy noise events. Therefore, efficient spallation
event reduction and low εmis in neutron tagging are important
to reduce the accidental coincidence background. Thus, the
spallation cut criteria are optimized in each energy range to
remove various isotope decays at the corresponding energy.
Because of the lower εmis than for SK-IV, we reoptimized the
spallation cut criteria below 15.49MeV, where we have large
enough statistics of the spallation sample. As a result, the
spallation cut condition was loosened to achieve higher signal
efficiency. On the other hand, the spallation cut criteria cannot
be optimized above 15.49MeV because there are fewer
spallation samples. In order to avoid possible systematics
due to misestimating the spallation backgrounds in this
region, harder spallation cut with lower signal efficiency was

applied to almost completely eliminate spallation events above

15.49MeV.
The side-band region above 29.49MeV is used as the

reference for the atmospheric neutrino events. The efficiency in

this region is stable and almost the same as for the

27.49–29.49MeV bin.

4. Background Estimation

Major background sources in the signal energy region are

atmospheric neutrino interaction events, reactor neutrino

events, and decays of spallation isotopes produced by

cosmic-ray muon events. The solar neutrinos, which predomi-

nantly interact via electron scattering in SK, have no

subsequent neutron signal. Thus, requiring one neutron makes

the solar neutrino background negligible. Another background

source is accidental background events, which are a pair of

prompt SHE events and a misidentified delayed signal due to

PMT noise hits or radioactivity.
Spallation isotope decays other than the β+ n decay are

efficiently removed by the spallation event cut and neutron

tagging. 8He, 11Li, 16C, and 9Li are the representative decay

isotopes that undergo β+ n decay. However, 11Li is negligible

since it can be removed by the spallation cut efficiently due to

its short life (T1/2< 0.01 s), and its production yield is low

(10−9 μ−1 g−1 cm2; Li & Beacom 2014). Also, 8He and 16C

have a low production yield of about 0.23× 0.16 and

0.02× 10−7 μ−1 g−1 cm2
(Li & Beacom 2014). In contrast,

9Li has a relatively long life (T1/2∼ 0.18 s), so it is difficult to

identify its parent muon. In addition, the production yield is

sufficiently higher, about 1.9× 0.51× 10−7 μ−1 g−1 cm2
(Li &

Beacom 2014), where 0.51 comes from the branching ratio for

this decay mode. Thus, we consider only 9Li as the remaining

background from the spallation isotope decays. The production

yield of 9Li event is measured to be 0.86± 0.12 (stat. )±

0.15 (sys. ) kton−1
· day−1 by Zhang et al. (2016), and a

prediction of the spectrum is given in Abe et al. (2021).
Reactor n̄e inevitably remains in the final signal candidates

since the observed event is IBD, which is the same as our target

signal. The spectrum and yield are evaluated by the SKReact

code (Goldsack 2022) based on the reactor neutrino model

from Baldoncini et al. (2015) in the first 7.5–9.5 MeV Erec bin.

Their contribution above the 9.5 MeV Erec bin is negligible.
The number of atmospheric neutrino background events is

estimated by the simulation based on the HKKM flux (Honda

et al. 2007, 2011) as the neutrino flux and NEUT 5.4.0.1

(Hayato 2009; Hayato & Pickering 2021) as the neutrino

interaction simulator. Below 16MeV of Erec, nuclear deexcita-

tion gamma-rays from neutral-current quasi-elastic (NCQE)

interactions dominate (Ankowski et al. 2012). NCQE interac-

tions induce prompt gamma-rays and nuclei production. Above

16MeV, it is dominated by charged-current quasi-elastic

(CCQE) interactions with neutron production. Most of the

events with Erec from 29.5 to 79.5 MeV consist of the decay

electron from an unobserved muon originating from CCQE

interacting atmospheric neutrinos. Since its energy distribution

is the well-known Michel spectrum, the flux of atmospheric

neutrino CCQE events in our MC is scaled by fitting the

spectrum of the 29.5< Erec< 79.5MeV side-band region to

the data.

Figure 1. IBD signal efficiency for the signal energy region. The 100%
efficiency line corresponds to data after trigger requirements and noise
reduction cuts. These lines show the cumulative efficiency at each cut stage,
performed in the order shown in the legend. More detailed explanations for
each reduction step, except for the neutron tagging, are described in Abe
et al. (2021).
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The number of accidental coincidence background events
Bacc is estimated as

( )e= ´ -B N , 1acc mis pre ntag
data

where εmis is the neutron misidentification probability

described in Section 3, and -Npre ntag
data represents the number

of remaining observed events after all selection criteria except

neutron tagging.
Systematic uncertainties are estimated for only signal energy

regions. The uncertainties on the NCQE events, spallation 9Li,
and reactor neutrinos are taken as estimated by Abe et al.
(2021), as 68% below 15.49MeV and 82% above 15.49MeV,
60%, and 100% for the NCQE, 9Li, and reactor neutrino
backgrounds, respectively. Other components, such as non-
NCQE events and accidental coincidence events, are newly
estimated from the observed data in SK-VI based on the same
method as Abe et al. (2021), 44% and 4%, respectively.

5. Results

After all event selection criteria are applied, 16 events
remain within the signal energy region in 552.2 day data. In
this analysis, we adopt five separate bins of Erec, of widths
7.5–9.5, 9.5–11.5, 11.5–15.5, 15.5–23.5, and 23.5–29.5 MeV
for the signal window. Also, the side-band region is separated
into bins for each 10MeV. Figure 2 shows the Erec spectrum of
those events. This is also listed in Table 1.

The probabilities of finding the observed number of events due
to the fluctuation of the background events (p-value) are evaluated
for each bin. It is done by performing 106 pseudo experiments
based on the number of observed events and expected background
events and the systematic uncertainties of the latter. The obtained
p-values are listed in Table 1. We conclude that no significant
excess is observed in the data over the expected background since
even the most significant bin has a p-value is 25.8%.

We set the upper limit for the number of signal excess over
the expected background with a 90% confidence level (C.L.;
N90). It is evaluated by the pseudo experiments using the
number of observed events with these 1σ statistical uncertain-
ties and the number of expected background events with their
systematic uncertainties. Then we estimate the flux upper limit
based on N90 of the observed event. Assuming there is no
signal event, the upper limit on the flux for each bin is
calculated as

¯ · · · ¯ ·
( )f

s e
=

N

N T dE
. 2

p
90
limit 90

IBD sig

Here, s̄IBD is the averaged total cross section of IBD for each

energy bin, Np is the number of protons as a target in the 22.5

kton of the fiducial volume of SK, T is the live time of

observation (552.2 days), ēsig is the averaged signal efficiency

for each energy bin after all event selection criteria are applied

as shown in Figure 1, and dE is the bin width at each bin. The

neutrino energy Eν is calculated by Eν= Erec+ 1.8 MeV. The

total cross section is given by the calculation in Strumia &

Vissani (2003).
The expected upper limit from the background-only

hypothesis at 90% C.L., N90, exp, is evaluated using the number
of expected background events and their statistical uncertainty.
Then we extract the expected flux sensitivity by replacing N90

with N90, exp in Equation (2).

Figure 3 shows the upper limit of the n̄e flux extracted in this

search with the range of expectations of modern DSNB models.

The most optimistic expectation is Kaplinghat+00 (Kaplinghat

Figure 2. Reconstructed energy spectra of the observed data and the expected
background after data reductions with a linear (top) and a logarithmic (bottom)

scale for the vertical axis. These include the signal energy region and the side-
band region above 29.5 MeV. Each color-filled histogram shows the expected
backgrounds. The error bars in the data points represent the statistical
uncertainty estimated by taking the square root of the number of observed
events. These background histograms are stacked on the other histograms. The
hatched areas represent the total systematic uncertainty for each bin. The size of
uncertainty for each background is mentioned in the main text. The red dotted–
dashed line shows the DSNB expectation from the Horiuchi+09
model (Horiuchi et al. 2009), which is drawn separately from the stacked
histogram of the estimated backgrounds.

Table 1

Summary of Observed Events, Expected Background Events, and p-value for
Each Erec Bin

Erec (MeV) Observed Expected p-value

7.5–9.5 5 7.73 ± 2.54 0.798

9.5–11.5 5 4.14 ± 1.23 0.398

11.5–15.5 3 2.13 ± 0.59 0.359

15.5–23.5 2 0.98 ± 0.35 0.258

23.5–29.5 1 0.98 ± 0.41 0.597

Note. Errors for the expected background represent only the systematic

uncertainty.
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et al. 2000), and the most pessimistic one is Nakazato+15
(Nakazato et al. 2015) with the assumption of normal mass
ordering in whole energy ranges, respectively. The upper limit
of the flux for each bin is summarized in Table 2.

6. Future Prospects

In 2022 June, the SK-Gd experiment was upgraded to the
SK-VII phase, in which additional Gd was introduced into the
detector, providing a mass concentration of approximately
0.03%. In this phase, neutron tagging efficiency is expected to
be over 55% while having comparable εmis with SK-VI,
leading to 1.5 times higher sensitivity for the n̄e in the case of
the same live time as for SK-VI. Furthermore, more efficient
noise reduction by neutron tagging will enable a lower energy

threshold. Hence we can search in a lower-energy region,
which will increase signal acceptance for DSNB, solar
antineutrinos, and light-dark-matter searches.

7. Conclusions

We searched for astrophysical n̄e, using the SK-VI data
below 29.5MeV for Erec between 2020 August and 2022 May,
with 0.01% Gd mass concentration. This is an independent data
set from the previous SK-IV search (Abe et al. 2021), using the
data taken with pure water. In this analysis, a brand-new
method for tagging neutrons using the signal of neutron capture
on Gd is utilized so that the efficiency of neutron tagging is
twice as high while keeping a low-misidentification probability.
No significant excess above the expected backgrounds at

Figure 3. Upper limits on the n̄e flux, calculated by Equation (2). The red lines show the observed (solid) and expected (dotted–dashed) 90% C.L. upper limit for SK-
VI. The blue lines show the observed (solid) and expected (dotted–dashed) 90% C.L. upper limit for SK-IV Abe et al. (2021). The green line represents the 90% C.L.
observed upper limit placed by KamLAND Abe et al. (2022c). The gray-shaded region represents the range of the modern theoretical expectation. The expectation
drawn in the figure includes DSNB flux models (Hartmann & Woosley 1997; Malaney 1997; Kaplinghat et al. 2000; Ando et al. 2003; Horiuchi et al. 2009;
Lunardini 2009; Galais et al. 2010; Nakazato et al. 2015; Horiuchi et al. 2018, 2021; Kresse et al. 2021; Tabrizi & Horiuchi 2021; Ekanger et al. 2022). Ando+03
model was updated in Ando (2005).

Table 2

Summary Table of Upper Limits, Sensitivity, and Optimistic and Pessimistic DSNB Expectation from Kaplinghat et al. (2000) and Nakazato et al. (2015),
Respectively

Neutrino Energy
Observed upper limit Expected sensitivity

Averaged theoretical expectation of DSNB

(MeV)
(cm−2 s−1 MeV−1

) (cm−2 s−1 MeV−1
)

(cm−2 s−1 MeV−1
)

SK-IV SK-VI SK-IV SK-VI

9.29–11.29 37.30 34.07 44.35 50.78 0.20–2.40

11.29–13.29 20.43 18.43 11.35 15.12 0.13–1.66

13.29–17.29 4.77 3.76 2.05 2.71 0.67–0.94

17.29–25.29 0.17 0.90 0.21 0.50 0.02–0.30

25.29–31.29 0.04 0.33 0.11 0.33 <0.01–0.07
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greater than 90% C.L. level for five separate energy bins
between 9.3 and 31.3 MeV is found. Thus, we placed the upper
limits on the n̄e flux for the observed upper limit and the
expected sensitivity. The sensitivity of this work is comparable
to the previous SK-IV search (Abe et al. 2021) with a live time
of 2970 days, which is the world’s most sensitive search above
13.3 MeV, even though the live time of 552.2 days is about 5
times smaller. The result was achieved by neutron tagging with
Gd signal and lowered probability of accidental coincidences
thanks to the benefit of introducing Gd.
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