101 research outputs found

    Urinary Deoxynivalenol Is Correlated with Cereal Intake in Individuals from the United Kingdom

    Get PDF
    Background Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops. DON is toxic to animals, but the effects on humans are poorly understood, in part because exposure estimates are of limited precision. Objectives In this study we used the U.K. adult National Diet and Nutrition Survey to compare 24-hr urinary DON excretion with cereal intake. Methods One hundred subjects were identified for each of the following cereal consumption groups: low (mean, 107 g cereal/day; range, 88–125), medium (mean, 179 g/day; range, 162–195) and high (mean, 300 g/day; range, 276–325). DON was analyzed in 24-hr urine samples by liquid chromatography–mass spectrometry after purification on immunoaffinity columns. Results DON was detected in 296 of 300 (98.7%) urine samples. Cereal intake was significantly associated with urinary DON (p < 0.0005), with the geometric mean urinary levels being 6.55 μg DON/day [95% confidence interval (CI), 5.71–7.53]; 9.63 μg/day (95% CI, 8.39–11.05); and 13.24 μg/day (95% CI, 11.54–15.19) for low-, medium-, and high-intake groups, respectively. In multivariable analysis, wholemeal bread (p < 0.0005), white bread (p < 0.0005), “other” bread (p < 0.0005), buns/cakes (p = 0.003), high-fiber breakfast cereal (p = 0.016), and pasta (p = 0.017) were significantly associated with urinary DON. Wholemeal bread was associated with the greatest percent increase in urinary DON per unit of consumption, but white bread contributed approximately twice as much as wholemeal bread to the urinary DON levels because it was consumed in higher amounts. Conclusion The majority of adults in the United Kingdom appear to be exposed to DON, and on the basis of the urinary levels, we estimate that some individuals may exceed the European Union (EU) recommended maximum tolerable daily intake of 1,000 ng DON/kg (bw). This exposure biomarker will be a valuable tool for biomonitoring as part of surveillance strategies and in etiologic studies of DON and human disease risk

    Personalising airway clearance in chronic suppurative lung diseases: a scoping review.

    Get PDF
    Background Personalised airway clearance techniques are commonly recommended to augment mucus clearance in chronic suppurative lung diseases. It is unclear what current literature tells us about how airway clearance regimens should be personalised. This scoping review explores current research on airway clearance technique in chronic suppurative lung diseases, to establish the extent and type of guidance in this area, identify knowledge gaps and determine the factors which physiotherapists should consider when personalising airway clearance regimens. Methods Systematic searching of online databases (MEDLINE, EMBASE, CINAHL, PEDro, Cochrane, Web of Science) was used to identify full-text publications in the last 25 years that described methods of personalising airway clearance techniques in chronic suppurative lung diseases. Items from the TIDieR framework provided a priori categories which were modified based on the initial data to develop a “Best-fit” framework for data charting. The findings were subsequently transformed into a personalisation model. Results A broad range of publications were identified, most commonly general review papers (44%). The items identified were grouped into seven personalisation factors: physical, psychosocial, ACT type, procedures, dosage, response, and provider. As only two divergent models of airway clearance technique personalisation were found, the personalisation factors identified were then used to develop a model for physiotherapists. Conclusions The personalisation of airway clearance regimens is widely discussed amongst current literature which provides a range of factors that should be considered. This review summarises the current literature, organising findings into a proposed airway clearance personalisation model, to provide clarity in this field

    Arsenic occurrence in Malawi groundwater

    Get PDF
    Despite an estimated 90,000 groundwater points, mostly hand-pumped boreholes, being used for drinking-water supply in Malawi, evaluation of groundwater arsenic has been limited. Here we review the literature and collate archive data on groundwater arsenic occurrence in Malawi; add to these data, by surveying occurrence in handpumped boreholes in susceptible aquifers; and, conclude on risks to water supply. Published literature is sparse with two of the three studies reporting arsenic data in passing, with concentrations below detection limits. The third study of 25 alluvial aquifer boreholes found arsenic mostly at 1-10 μg/l concentration, but with four sites above the World Health Organisation (WHO) 10 μg/l drinking-water guideline, up to 15 μg/l; the study also discerned hydrochemical controls. Archive data from non-governmental organisation (NGO) borehole testing (two datasets) exhibited below detection results. Our surveys in 2014-18 of hand-pumped supplies in alluvial and bedrock aquifers tested 310 groundwater sites (78% alluvial, 22% bedrock) and found below test-kit detection (&lt;10 μg/l) arsenic throughout, except possible traces at two boreholes containing geothermal-groundwater contributions. Our subsequent survey of 15 geothermal groundwater boreholes/springs found four sites with arsenic detected at 4-12 μg/l concentration. These sites displayed the highest temperatures, supporting increased arsenic being related to a geothermal groundwater influence. Our 919 sample dataset overall indicates arsenic in Malawian groundwater appears low, and well within Malawi’s drinking-water standard of 50 μg/l (MS733:2005). Still, however, troublesome concentrations above the WHO drinking-water guideline occur. Continued research is needed to confirm that human-health risks are low; including, increased monitoring of the great many hand-pumped supplies, and assessing hydro-biogeochemical controls on the higher arsenic concentrations found.Keywords: Arsenic; Groundwater quality; Malawi; Drinking wate

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer’s disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-ß (Aß) peptides. How Aß aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aß aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aß aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aß42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aß42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aß aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aß42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aß plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
    corecore