81 research outputs found

    Variation in colorectal cancer treatment and outcomes in Scotland:real world evidence from national linked administrative health data

    Get PDF
    Background: Colorectal cancer (CRC) is the fourth most common type of cancer in the United Kingdom and the second leading cause of cancer death. Despite improvements in CRC survival over time, Scotland lags behind its UK and European counterparts. In this study, we carry out an exploratory analysis which aims to provide contemporary, population level evidence on CRC treatment and survival in Scotland. Methods: We conducted a retrospective population-based analysis of adults with incident CRC registered on the Scottish Cancer Registry (Scottish Morbidity Record 06 (SMR06)) between January 2006 and December 2018. The CRC cohort was linked to hospital inpatient (SMR01) and National Records of Scotland (NRS) deaths records allowing a description of their demographic, diagnostic and treatment characteristics. Cox proportional hazards regression models were used to explore the demographic and clinical factors associated with all-cause mortality and CRC specific mortality after adjusting for patient and tumour characteristics among people identified as early-stage and treated with surgery. Results: Overall, 32,691 (73%) and 12,184 (27%) patients had a diagnosis of colon and rectal cancer respectively, of whom 55% and 53% were early-stage and treated with surgery. Five year overall survival (CRC specific survival) within this cohort was 72% (82%) and 76% (84%) for patients with colon and rectal cancer respectively. Cox proportional hazards models revealed significant variation in mortality by sex, area-based deprivation and geographic location.Conclusions: In a Scottish population of patients with early-stage CRC treated with surgery, there was significant variation in risk of death, even after accounting for clinical factors and patient characteristics.<br/

    Transmission of SARS-CoV-2 in a primary school setting with and without public health measures using real-world contact data:A modelling study

    Get PDF
    BACKGROUND: Stringent public health measures have been shown to influence the transmission of SARS-CoV-2 within school environments. We investigated the potential transmission of SARS-CoV-2 in a primary school setting with and without public health measures, using fine-grained physical positioning traces captured before the COVID-19 pandemic. METHODS: Approximately 172.63 million position data from 98 students and six teachers from an open-plan primary school were used to predict a potential transmission of SARS-CoV-2 in primary school settings. We first estimated the daily average number of contacts of students and teachers with an infected individual during the incubation period. We then used the Reed-Frost model to estimate the probability of transmission per contact for the SARS-CoV-2 Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron variant (B.1.1.529). Finally, we built a binomial distribution model to estimate the probability of onward transmission in schools with and without public health measures, including face masks and physical distancing. RESULTS: An infectious student would have 49.1 (95% confidence interval (CI) = 46.1-52.1) contacts with their peers and 2.00 (95% CI = 1.82-2.18) contacts with teachers per day. An infectious teacher would have 47.6 (95% CI = 45.1-50.0) contacts with students and 1.70 (95% CI = 1.48-1.92) contacts with their colleague teachers per day. While the probability of onward SARS-CoV-2 transmission was relatively low for the Alpha and Delta variants, the risk increased for the Omicron variant, especially in the absence of public health measures. Onward teacher-to-student transmission (88.9%, 95% CI = 88.6%-89.1%) and teacher-to-teacher SARS-CoV-2 transmission (98.4%, 95% CI = 98.5%-98.6%) were significantly higher for the Omicron variant without public health measures in place. CONCLUSIONS: Our findings illustrate that, despite a lower frequency of close contacts, teacher-to-teacher close contacts demonstrated a higher risk of transmission per contact of SARS-CoV-2 compared to student-to-student close contacts. This was especially significant with the Omicron variant, with onward transmission more likely occurring from teacher index cases than student index cases. Public health measures (eg, face masks and physical distance) seem essential in reducing the risk of onward transmission within school environments

    The effectiveness of non-pharmaceutical interventions in reducing SARS-CoV-2 transmission and COVID-19 incidence and mortality:systematic review and meta-analysis

    Get PDF
    OBJECTIVE: To review the evidence on the effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Medline, Embase, CINAHL, Biosis, Joanna Briggs, Global Health, and World Health Organization COVID-19 database (preprints). ELIGIBILITY CRITERIA FOR STUDY SELECTION: Observational and interventional studies that assessed the effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality. MAIN OUTCOME MEASURES: The main outcome measure was incidence of covid-19. Secondary outcomes included SARS-CoV-2 transmission and covid-19 mortality. DATA SYNTHESIS: DerSimonian Laird random effects meta-analysis was performed to investigate the effect of mask wearing, handwashing, and physical distancing measures on incidence of covid-19. Pooled effect estimates with corresponding 95% confidence intervals were computed, and heterogeneity among studies was assessed using Cochran’s Q test and the I(2) metrics, with two tailed P values. RESULTS: 72 studies met the inclusion criteria, of which 35 evaluated individual public health measures and 37 assessed multiple public health measures as a “package of interventions.” Eight of 35 studies were included in the meta-analysis, which indicated a reduction in incidence of covid-19 associated with handwashing (relative risk 0.47, 95% confidence interval 0.19 to 1.12, I(2)=12%), mask wearing (0.47, 0.29 to 0.75, I(2)=84%), and physical distancing (0.75, 0.59 to 0.95, I(2)=87%). Owing to heterogeneity of the studies, meta-analysis was not possible for the outcomes of quarantine and isolation, universal lockdowns, and closures of borders, schools, and workplaces. The effects of these interventions were synthesised descriptively. CONCLUSIONS: This systematic review and meta-analysis suggests that several personal protective and social measures, including handwashing, mask wearing, and physical distancing are associated with reductions in the incidence covid-19. Public health efforts to implement public health measures should consider community health and sociocultural needs, and future research is needed to better understand the effectiveness of public health measures in the context of covid-19 vaccination. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178692

    Measurement of cortisol in saliva: a comparison of measurement error within and between international academic-research laboratories

    Get PDF
    Objective: Hundreds of scientific publications are produced annually that involve the measurement of cortisol in saliva. Intra- and inter-laboratory variation in salivary cortisol results has the potential to contribute to cross- study inconsistencies in findings, and the perception that salivary cortisol results are unreliable. This study rigor- ously estimates sources of measurement variability in the assay of salivary cortisol within and between established international academic-based laboratories that specialize in saliva analyses. One hundred young adults (Mean age: 23.10 years; 62 females) donated 2 mL of whole saliva by passive drool. Each sample was split into multiple- 100 µL aliquots and immediately frozen. One aliquot of each of the 100 participants’ saliva was transported to academic laboratories (N = 9) in the United States, Canada, UK, and Germany and assayed for cortisol by the same commercially available immunoassay. Results: 1.76% of the variance in salivary cortisol levels was attributable to differences between duplicate assays of the same sample within laboratories, 7.93% of the variance was associated with differences between laboratories, and 90.31% to differences between samples. In established-qualified laboratories, measurement error of salivary cortisol is minimal, and inter-laboratory differences in measurement are unlikely to have a major influence on the determined values

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Development of an amplicon-based sequencing approach in response to the global emergence of mpox

    Get PDF
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH) awarded to CBFV. INSA was partially funded by the HERA project (Grant/ 2021/PHF/23776) supported by the European Commission through the European Centre for Disease Control (to VB).info:eu-repo/semantics/publishedVersio

    Targeting Huntingtin expression in patients with Huntington's disease

    Get PDF
    Background Huntington’s disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. Methods We conducted a randomized, double-blind, multiple-ascending-dose, phase 1–2a trial involving adults with early Huntington’s disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. Results Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and −20%, −25%, −28%, −42%, and −38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). Conclusions Intrathecal administration of HTTRx to patients with early Huntington’s disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann–La Roche; ClinicalTrials.gov number, NCT02519036.

    Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>

    Get PDF
    Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi

    X-chromosome and kidney function:evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements

    Get PDF
    X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.</p

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease
    corecore