116 research outputs found

    The Cascadia Initiative : a sea change In seismological studies of subduction zones

    Get PDF
    Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 2 (2014): 138-150, doi:10.5670/oceanog.2014.49.Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technology—shielded ocean bottom seismometers—is allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.The Cascadia Initiative is supported by the National Science Foundation; the CIET is supported under grants OCE- 1139701, OCE-1238023, OCE‐1342503, OCE-1407821, and OCE-1427663 to the University of Oregon

    Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N) : implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08004, doi:10.1029/2007GC001629.New seismic refraction data reveal that hydrothermal circulation at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge at 26°10′N is not driven by energy extracted from shallow or mid-crustal magmatic intrusions. Our results show that the TAG hydrothermal field is underlain by rocks with high seismic velocities typical of lower crustal gabbros and partially serpentinized peridotites at depth as shallow as 1 km, and we find no evidence for low seismic velocities associated with mid-crustal magma chambers. Our tomographic images support the hypothesis of Tivey et al. (2003) that the TAG field is located on the hanging wall of a detachment fault, and constrain the complex, dome-shaped subsurface geometry of the fault system. Modeling of our seismic velocity profiles indicates that the porosity of the detachment footwall increases after rotation during exhumation, which may enhance footwall cooling. However, heat extracted from the footwall is insufficient for sustaining long-term, high-temperature, hydrothermal circulation at TAG. These constraints indicate that the primary heat source for the TAG hydrothermal system must be a deep magma reservoir at or below the base of the crust.This research was supported by NSF grant OCE-0137329

    Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 89-93, doi:10.1038/nature08095.The oceanic crust extends over two thirds of the Earth’s solid surface and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and mid crust are constructed by dyking and seafloor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust. However, seismic images of molten sills within the lower crust have been elusive. To date only seismic reflections from mid-crustal melt lenses and sills within the MTZ have been described, suggesting that melt is efficiently transported through the lower crust. Here we report deep crustal seismic reflections off the southern Juan de Fuca Ridge that we interpret as originating from a molten sill presently accreting the lower oceanic crust. The sill sits 5-6 km beneath the seafloor and 850-900 m above the MTZ, and it is located 1.4-3.2 km off thespreading axis. Our results provide evidence for the existence of low permeability barriers to melt migration within the lower section of modern oceanic crust forming at intermediate-to-fast spreading rates, as inferred from ophiolite studies.This research was supported by grants form the US NSF

    Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation

    Get PDF
    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a whole-body cold exposure induced a larger stimulation of the ANS compared to partial-body cold exposure

    The Familial Intracranial Aneurysm (FIA) study protocol

    Get PDF
    BACKGROUND: Subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms (IAs) occurs in about 20,000 people per year in the U.S. annually and nearly half of the affected persons are dead within the first 30 days. Survivors of ruptured IAs are often left with substantial disability. Thus, primary prevention of aneurysm formation and rupture is of paramount importance. Prior studies indicate that genetic factors are important in the formation and rupture of IAs. The long-term goal of the Familial Intracranial Aneurysm (FIA) Study is to identify genes that underlie the development and rupture of intracranial aneurysms (IA). METHODS/DESIGN: The FIA Study includes 26 clinical centers which have extensive experience in the clinical management and imaging of intracerebral aneurysms. 475 families with affected sib pairs or with multiple affected relatives will be enrolled through retrospective and prospective screening of potential subjects with an IA. After giving informed consent, the proband or their spokesperson invites other family members to participate. Each participant is interviewed using a standardized questionnaire which covers medical history, social history and demographic information. In addition blood is drawn from each participant for DNA isolation and immortalization of lymphocytes. High- risk family members without a previously diagnosed IA undergo magnetic resonance angiography (MRA) to identify asymptomatic unruptured aneurysms. A 10 cM genome screen will be performed to identify FIA susceptibility loci. Due to the significant mortality of affected individuals, novel approaches are employed to reconstruct the genotype of critical deceased individuals. These include the intensive recruitment of the spouse and children of deceased, affected individuals. DISCUSSION: A successful, adequately-powered genetic linkage study of IA is challenging given the very high, early mortality of ruptured IA. Design features in the FIA Study that address this challenge include recruitment at a large number of highly active clinical centers, comprehensive screening and recruitment techniques, non-invasive vascular imaging of high-risk subjects, genome reconstruction of dead affected individuals using marker data from closely related family members, and inclusion of environmental covariates in the statistical analysis

    BOD1 Is Required for Cognitive Function in Humans and <i>Drosophila</i>

    Get PDF
    Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features

    Prevalence, Distribution, and Impact of Mild Cognitive Impairment in Latin America, China, and India: A 10/66 Population-Based Study

    Get PDF
    A set of cross-sectional surveys carried out in Cuba, Dominican Republic, Peru, Mexico, Venezuela, Puerto Rico, China, and India reveal the prevalence and between-country variation in mild cognitive impairment at a population level

    Perspectives on ethnic and racial disparities in Alzheimer\u27s disease and related dementias: Update and areas of immediate need

    Get PDF
    Alzheimer\u27s disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer\u27s Association International Society to Advance Alzheimer\u27s Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise “state-of-the-science” report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations. © 2018 The Author

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
    corecore