86 research outputs found

    Influence of Energy Balance on Reproductive Performance and Milk Production of Dairy Cows at Pre-partum and Early Lactation Periods

    Get PDF
    Abstract: The objective of this study was to evaluate the influence of energy balance in dairy cows at pre-partum and early lactation periods on their subsequent reproductive and productive performance. High producing, Ayrshire cows were randomly selected from the heavy pregnant, dry cow herd of Ambewela dairy farm in Up-Country, Sri Lanka. The serum NEFA (non esterifie fatty acid) and milk BHBA (beta hydroxyl butyric acid) concentrations were used as indicators of energy status of the cows. Days for the first AI, open days and conception rate were used to evaluate the reproductive performance. Sub-clinical ketosis (milk BHBA≄200 ”mol/L) was recorded among 25 and 31.25% cows at 5 days pre-partum and during 100 days post-partum periods, respectively. Further, they took significantly longer period to reach the first AI and showed significantly greater (p<0.0001) open days compared to the cows those did not show signs of sub-clinical ketosis (milk BHBA<100 ”mol/L) during the period. Cows those recorded≄200 ”mol/L BHBA level in milk during the lactation period from 10 to 60 days took longest period for the first AI and had the highest open days. Only 36% cows were pregnant at 100 days post-partum. Further, none of the cows showed sub-clinical ketosis during 100 days post-partum was pregnant. They had higher circulating NEFA levels at 5 days pre-partum and 10 days post-partum periods and significantly lower (p<0.05) in milk production compared to their pregnant counterparts. This study indicated that the magnitude and duration of the prepartum energy status (i.e., negative energy balance) has a detrimental effect on subsequent reproductive and productive performances in high producing dairy cows

    Cystic Ovarian Follicles in Cattle

    Get PDF
    The objective of this study was to determine the effects of different intramuscular dosages of human chorionic gonadotropin (hCG) on ovarian follicular development of dairy cows diagnosed with refractory cystic ovarian follicles (COFs). Cows diagnosed with COFs (≄25mm in diameter) were allocated to four treatment groups: hCG-1 (n = 3), a single dose of 4,500 IU on day 1; hCG-2 (n = 3), 2,250 IU on days 1 and 3; hCG-3 (n = 3), 1,500 IU on days 1, 3, and 5; and hCG-C (n = 3) received saline on day 1. Blood sampling and ovarian ultrasonographic (US) examinations were performed on days 1, 3, 5, 7, and 14. A progesterone (P4) value 1 ng/ml was 100% (3/3) and 100% (3/3) in group hCG-1; 100% (3/3) and 67% (2/3) in group hCG-2; 67%(2/3) and 100%(3/3) in group hCG-3; and 33%(1/3) and 33%(1/3) in group hCG-C, respectively. Strong tendencies of P4 increases in group hCG-1 (P = 0.054) and hCG-2 (P = 0.051) were measured after hCG administration. Additionally, P4 values tended to be higher (P = 0.07) for group hCG-1 compared to group hCG-C on day 5. The preliminary findings of this study suggest that multiple smaller doses of hCG might be equally effective as a single large dose of hCG in modulating ovarian follicular development in dairy cows with COFs

    Effects of fungicide 'Mancozeb' on bovine spermatozoa

    Get PDF
    Session - Health and Hygiene: no. P163Fungicides are used to maximize the production and productivity of modern agriculture. Present work was undertaken to investigate the effect/s of Mancozeb fungicide on bovine spermatozoa. Semen samples were obtained from Jersey bulls (n=6) at the Central Artificial Insemination Station, Kundasale. Preliminary studies were carried out to determine the effective dose and incubation time using 0.01ÎŒg/ml, 0.1ÎŒg/ml, 1ÎŒg/ml and 10ÎŒg/ml of pure Mancozeb and 1.0 ÎŒg/ml commercial Mancozeb concentrations during 1-4 hours of incubation periods. Sperm motility parameters were investigated using a Computer Assisted Sperm Analysis (CASA) system. Further functional analyses were performed to test the Acrosine ...postprin

    Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands

    Get PDF
    The Caenorhabditis elegans n-3 fatty acid desaturase (Fat-1) acts on a range of 18- and 20-carbon n-6 fatty acid substrates. Transgenic female mice expressing the Fat-1 gene under transcriptional control of the goat ÎČ-casein promoter produce milk phospholipids having elevated levels of n-3 polyunsaturated fatty acids (PUFA). However, females from this line were also observed to have impaired reproductive performance characterized by a smaller litter size (2.7 ± 0.6 vs. 7.2 ± 0.7; P < 0.05) than wildtype controls. While there is a close association between PUFA metabolism, prostaglandin biosynthesis, and fertility; reproductive problems in these mice were unanticipated given that the Fat-1 transgene is primarily expressed in the lactating mammary gland. Using multiple approaches it was found that Fat-1 mice have normal ovulation and fertilization rates; however fewer embryos were present in the uterus prior to implantation. Small litter size was also found to be partly attributable to a high incidence of post-implantation fetal resorptions. Embryo transfer experiments revealed that embryos developing from oocytes derived from transgenic ovaries had an increased rate of post-implantation resorption, regardless of the uterine genotype. Ovary transplantation between Fat-1 and C57BL/6 wildtype females revealed that non-ovarian factors also contributed to the smaller litter size phenotype. Finally, surgical removal of the mammary glands from juvenile Fat-1 mice increased the subsequent number of implantation sites per female, but did not lessen the high rate of post-implantation resorptions. In conclusion, we herein report on a system where an exogenous transgene expressed predominately in the mammary gland detrimentally affects female reproduction, suggesting that in certain circumstances the mammary gland may function as an endocrine regulator of reproductive performance

    A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle

    Get PDF
    BACKGROUND: Reproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived steroids estrogen and progesterone are key regulators of oviductal function. The objective of this study was to investigate luteal and follicular phase-specific oviductal epithelial cell function by using microarray-based transcriptional profiling, to increase our understanding of mRNAs regulating epithelial cell processes, and to identify novel genes and biochemical pathways that may be found to affect fertility in the future. METHODS: Six normally cycling Angus heifers were assigned to either luteal phase (LP, n = 3) or follicular phase (FP, n = 3) treatment groups. Heifers in the LP group were killed between day 11 and 12 after estrus. Heifers in the FP group were treated with 25 mg PGF(2α) (Lutalyse, Pfizer, NY) at 8 pm on day 6 after estrus and killed 36 h later. Transcriptional profiling by microarray and confirmation of selected mRNAs by real-time RT-PCR analyses was performed using total RNA from epithelial cells isolated from sections of the ampulla and isthmus collected from LP and FP treatment groups. Differentially expressed genes were subjected to gene ontology classification and bioinformatic pathway analyses. RESULTS: Statistical one-way ANOVA using Benjamini-hochberg multiple testing correction for false discovery rate (FDR) and pairwise comparison of epithelial cells in the ampulla of FP versus LP groups revealed 972 and 597 transcripts up- and down-regulated, respectively (P < 0.05). Within epithelial cells of the isthmus in FP versus LP groups, 946 and 817 transcripts were up- and down-regulated, respectively (P < 0.05). Up-regulated genes from both ampulla and isthmus were found to be largely involved in cholesterol biosynthesis and cell cycle pathways, while down-regulated genes were found in numerous inflammatory response pathways. CONCLUSIONS: Microarray-based transcriptional profiling revealed phase of the cycle-dependent changes in the expression of mRNA within the epithelium of the oviducts’ ampulla and isthmus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12958-015-0077-1) contains supplementary material, which is available to authorized users

    Efficient isolation, biophysical characterisation and molecular composition of extracellular vesicles secreted by primary and immortalised cells of reproductive origin

    Get PDF
    Effective communication between the maternal reproductive tract, gametes and the pre-implantation embryo is essential for the successful establishment of pregnancy. Recent studies have recognised extracellular vesicles (EVs) as potent vehicles for intercellular communication, potentially via their transport of microRNAs (miRNAs). The aim of the current investigation was to determine the size, concentration and electrical surface properties (zeta potential) of EVs secreted by; (1) primary cultures of porcine oviductal epithelial cells (POECs) from the isthmus and ampullary regions of the female reproductive tract; (2) Ishikawa and RL95-2 human endometrial epithelial cell line cultures; and (3) the non-reproductive epithelial cell line HEK293T. In addition, this study investigated whether EVs secreted by POECs contained miRNAs. All cell types were cultured in EV-depleted medium for 24 or 48 h. EVs were successfully isolated from conditioned culture media using size exclusion chromatography. Nanoparticle tracking analysis (NTA) was performed to evaluate EV size, concentration and zeta potential. QRT-PCR was performed to quantify the expression of candidate miRNAs (miR-103, let-7a, miR-19a, miR-203, miR-126, miR-19b, RNU44, miR-92, miR-196a, miR-326 and miR-23a). NTA confirmed the presence of EVs with diameters of 50–150 nm in all cell types. EV size distribution was significantly different between cell types after 24 and 48 h of cell culture and the concentration of EVs secreted by POECs and Ishikawa cells was also time dependent. The distribution of EVs with specific electrokinetic potential measurements varied between cell types, indicating that EVs of differing cellular origin have varied membrane components. In addition, EVs secreted by POECs exhibited significantly different time dependant changes in zeta potential. QRT-PCR confirmed the presence of miR-103, let-7a, miR-19a, miR-203, miR-126, and miR-19b in EVs secreted by POECs (CT ≄ 29). Bioinformatics analysis suggests that these miRNAs are involved in cell proliferation, innate immune responses, apoptosis and cellular migration. In conclusion, reproductive epithelial cells secrete distinct populations of EVs containing miRNAs, which potentially act in intercellular communication in order to modulate the periconception events leading to successful establishment of pregnancy

    The gonadotropins: Tissue-specific angiogenic factors?

    Full text link
    • 

    corecore