100 research outputs found

    First Glimpse of the N= 82 Shell Closure below Z= 50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

    Get PDF
    We probe the N = 82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of 132 Cd offers the first value of the N = 82 , two-neutron shell gap below Z = 50 and confirms the phenomenon of mutually enhanced magicity at 132 Sn . Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in 129 Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group

    Laser-assisted decay spectroscopy and mass spectrometry of 178Au^178Au

    Get PDF
    A comprehensive study of the isotope 178Au has been made at the CERN-ISOLDE facility, using resonance laser ionization. Two long-lived states in 178Au were identified—a low-spin ground state and a high-spin isomer—each of which were produced as pure beams. Using the ISOLTRAP precision Penning trap, the excitation energy of the isomeric state in 178Au was determined to be E∗=189(14)keV. The α-decay fine structure patterns of the two states were studied using the Windmill decay station, providing information on the low-lying states in the daughter nucleus 174Ir. Nuclear spin assignments of I(178Aug)=(2,3) and I(178Aum)=(7,8) are made based on the observed ÎČ-decay feeding and hyperfine structure intensity patterns. These spin assignments are used for fitting the hyperfine structures of the two states from which values for the magnetic dipole moments are extracted. The extracted moments are compared with calculations using additivity relations to establish the most probable configurations for 178Aug,m

    Charge radii and electromagnetic moments of 195-211At

    Get PDF
    Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At197,199, for which a significant difference in the charge radii for ground (9/2-) and isomeric (1/2+) states has been observed

    Characterization of the shape-staggering effect in mercury nuclei

    Get PDF
    In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nuclides, the microscopic origin of this unique shape staggering has remained unclear. Here, by applying resonance ionization spectroscopy, mass spectrometry and nuclear spectroscopy as far as 177Hg, we determine 181Hg as the shape-staggering endpoint. By combining our experimental measurements with Monte Carlo shell model calculations, we conclude that this phenomenon results from the interplay between monopole and quadrupole interactions driving a quantum phase transition, for which we identify the participating orbitals. Although shape staggering in the mercury isotopes is a unique and localized feature in the nuclear chart, it nicely illustrates the concurrence of single-particle and collective degrees of freedom at play in atomic nuclei

    Laser Spectroscopy of Neutron-Rich 207,208Hg Isotopes : Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N =126 Shell Closure

    Get PDF
    International audienceThe mean-square charge radii of Hg207,208 (Z=80, N=127, 128) have been studied for the first time and those of Hg202,203,206 (N=122, 123, 126) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the N=126 neutron shell closure has been revealed, providing the first information on its behavior below the Z=82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at N=126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A nuclei, facilitated by particle-vibration coupling for odd-A nuclei

    Charge radii, moments, and masses of mercury isotopes across the N=126N=126 shell closure

    Get PDF
    Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the N=126N = 126 shell closure, the electromagnetic moments of 207^{207}Hg and more precise mass values of 206−208^{206-208}Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at N=126N = 126 are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predominantly in the particle-hole channel in CDFT, since both are present in the calculations without pairing. However, the magnitude of the kink is still affected by the occupation of the 1i11/21i_{11/2} and 2g9/22g_{9/2} orbitals with a dependence on the relative energies as well as pairing.Comment: 20 pages, 12 figures, Phys. Rev. C in pres

    First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Get PDF
    211 Po ions in the ground and isomeric states were produced via 238 U projectile fragmentation at 1000 MeV/u. The 211 Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions

    Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations

    Get PDF
    Neutron-deficient 177−185Hg isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of 177−180Hg. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 spin assignment for 177,179Hg were deduced. Experimental results are compared with density functional theory (DFT) and Monte Carlo shell model (MCSM) calculations. DFT calculations using Skyrme parametrizations predict a jump in the charge radius around the neutron N=104 midshell, with an odd-even staggering pattern related to the coexistence of nearly degenerate oblate and prolate minima. This near-degeneracy is highly sensitive to many aspects of the effective interaction, a fact that renders perfect agreement with experiments out of reach for current functionals. Despite this inherent difficulty, the SLy5s1 and a modified UNEDF1SO parametrization predict a qualitatively correct staggering that is off by two neutron numbers. MCSM calculations of states with the experimental spins and parities show good agreement for both electromagnetic moments and the observed charge radii. A clear mechanism for the origin of shape staggering within this context is identified: a substantial change in occupancy of the proton πh9/2 and neutron Îœi13/2 orbitals
    • 

    corecore