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The mean-square charge radii of 207;208Hg (Z ¼ 80, N ¼ 127, 128) have been studied for the first time

and those of 202;203;206Hg (N ¼ 122, 123, 126) remeasured by the application of in-source resonance-

ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the

N ¼ 126 neutron shell closure has been revealed, providing the first information on its behavior below the

Z ¼ 82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-

Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury

results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at

N ¼ 126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-

field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is

suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A

nuclei, facilitated by particle-vibration coupling for odd-A nuclei.

DOI: 10.1103/PhysRevLett.126.032502

Experimental investigations of nuclear charge radii
have revealed a rich abundance of regular patterns, abrupt
changes, and nonlinear trends along isotopic chains across
the nuclear chart [1,2]. Two near-universal features include
kinks at neutron shell closures and odd-even staggering
(OES), where an odd-N isotope has a smaller charge radius
than the average of its two even-N neighbors [1,3]. The
commonality of these features indicates that their origin is
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general and independent of local microscopic phenomena.
As such, measurements of kinks and OES provide a
particularly stringent benchmark for nuclear theory [4–9].
Historically, the majority of the discussion pertaining to

the effect of shell closures on charge radii focused on the
kink in the lead isotopic chain across N ¼ 126 [4–6,10,11],
which is shown in the inset of Fig. 1. A variety of
theoretical approaches have been employed to investigate
this kink. Relativistic mean field studies have described it
with varying degrees of success [5,12]. By contrast,
calculations in nonrelativistic density functional theories
(NR-DFTs) based on conventional functionals were unable
to reproduce the kink [4,8]. The differences between the
descriptions in these theoretical frameworks are related to
the relative occupations of the neutron ν1i11=2 and ν2g9=2
orbitals (located above the N ¼ 126 shell closure), with the
magnitude of the kink being driven by the occupation of the
ν1i11=2 orbital [11]. The extension of nonrelativistic func-

tionals, by the addition of gradient terms into the pairing
interaction, has been demonstrated as a possible way to
improve their description of OES and the kink [6,8]. An
alternative approach is the inclusion of a density

dependence in the spin-orbit interaction [7,13,14], derived
from the chiral three-nucleon interaction by Kohno [15].
The optimal method of quantifying the kink at N ¼ 126

considers isotopes with N ¼ 124, 126, and 128 to avoid
contributions from either OES or possible deformation in
isotopes further from the shell closure. However, in contrast
to the regions near N ¼ 50 and N ¼ 82 [1], there are
limited experimental data on charge radii behavior across
N ¼ 126 (specifically for N ¼ 128), with corresponding
measurements available only for Z ¼ 82 [18] and
Z ¼ 83 [19].
In this Letter, we report the first study of charge radii

across N ¼ 126 in the mercury (Z ¼ 80) isotopic chain,
thus enabling the Z dependence of the kink at N ¼ 126 to
be probed and providing the first benchmark for theory in
the region below the Z ¼ 82 proton shell closure. These
new data motivated us to undertake a comparative theo-
retical investigation of the kinks and OES in lead and
mercury charge radii across N ¼ 126. By applying both
spherical relativistic Hartree-Bogoliubov (RHB) [20] and
spherical nonrelativistic Hartree-Fock-Bogoliubov (NR-
HFB) [21] approaches, we explore whether an alternative
explanation of the kink and OES is possible. This Letter is
also the first study of OES within a relativistic framework.
The experimental data originate from the same meas-

urement campaign as described in Refs. [17,22], where
neutron-deficient mercury isotopes were also studied
(Fig. 1). Therefore, only a brief experimental overview
is included here. Mercury isotopes were produced at the
CERN-ISOLDE facility [23] by impinging a 1.4-GeV
proton beam from the Proton Synchrotron Booster onto
a molten-lead target. The neutral reaction products effused
into the anode cavity of a Versatile Arc Discharge and Laser
Ion Source (VADLIS) [24]. Laser light from the ISOLDE
Resonance Ionization Laser Ion Source (RILIS) complex
[25] was used to excite three sequential atomic transitions
for the resonance ionization of the mercury isotopes [26].
The photoions were extracted and mass separated by the
ISOLDE general-purpose separator and then directed to
either a Faraday cup for direct photoion detection or to the
ISOLTRAP Paul trap [27] and multireflection time-of-
flight mass spectrometer (MR-ToF MS) [28] for single-ion
counting and discrimination from isobaric contamination.
The first of the three atomic transitions (5d106s2 1S0 →

5d106s6p 3P°
1
, 253.65 nm) was probed by scanning a

frequency-tripled titanium-sapphire laser (full-width-at-
half-maximum bandwidth of less than 1 GHz before

tripling) [29]. Isotope shifts (IS), δνA;A
0
¼ νA − νA

0
, in

the frequency of this transition were measured for mercury
nuclei with A ¼ 202, 203, 206, 207, and 208 relative to the
stable reference isotope with A0 ¼ 198. Sample spectra are
presented in Fig. 2. Details of the scanning and fitting
procedures can be found in Refs. [22,30] and Refs. [22,31],
respectively, with further information on the data analysis
in Refs. [32,33]. The relative changes in the mean-square

FIG. 1. Systematics of the difference in mercury ground state
(g.s.) and isomer mean-square charge radii. Data from the present
Letter are shown by red symbols; earlier data are taken from
Refs. [16] (black) and [17] (blue). The inset highlights the kink at
N ¼ 126 and the neighboring OES in both the mercury and lead
[18] isotopic chains. The lead isotopes are arbitrarily displaced
from those of mercury for clarity. The dashed lines through
N ¼ 124 and 126 in the inset are added to highlight the kinks.
Statistical uncertainties are smaller than the data points.
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charge radii, δhr2iA;A
0
, were extracted from the measured

δνA;A
0
values via standard methods described in the

Supplemental Material [34].
The extracted δνA;A

0
and δhr2iA;A

0
values are presented in

Table I, and the δhr2iA;A
0
data are plotted in Fig. 1. There is

a visible kink at N ¼ 126, with a magnitude similar to

that in the lead isotopic chain. The IS for 202;203Hg and the
remeasured neutron-deficient isotopes [17,22] from the
same experimental campaign are in good agreement

with literature values. For 206Hg, there is an approximately
500-MHz discrepancy between this Letter and the thesis
value of Ref. [39] cited in Ref. [16], which is discussed in
Ref. [32]. Given the agreement of the results from the
present experimental campaign with the other literature

data, the δν206;198 value from this Letter is used for the
following discussion.
To interpret the data, a new RHB code was developed,

which enables the blocking of selected single-particle
orbitals and allows for fully self-consistent calculations
of the ground and excited states in odd-A nuclei.
A separable version of the Gogny pairing is used [40],
with the pairing strength of Ref. [41]. The NL3*, DD-PC1,
DD-ME2, and DD-MEδ covariant energy density func-
tionals (CEDF) were employed, the global performance
of which was tested in Ref. [41]. The functionals achieved
a comparable description of the kink and the OES; thus,
only the DD-ME2 results are discussed below. The results
for the other functionals will be included in a follow-up
paper [42].
The NR-HFB calculations were performed assuming

spherical symmetry with the semirealistic M3Y-P6a inter-
action, the spin-orbit properties of which were modified
[13] to improve the description of the charge radii of
proton-magic nuclei [7,13,14]. Here for the first time, we
apply it to the mercury isotopic chain. For N ≤ 126,

isotopes with hβ2
2
i1=2 < 0.1 were considered, where hβ2

2
i

is the mean-square deformation deduced from δhr2i using
the droplet model [3,43]. This restriction corresponds to
N ≥ 116 and N ≥ 121 for lead and mercury isotopes,
respectively.
The importance of a simultaneous agreement of ener-

getic and geometric nuclear observables in such inves-
tigations has been highlighted previously [6]. Thus, in
addition to calculating the charge radii, we also checked the
quality of the binding energy description. There is a good
agreement between the DD-ME2 and experimental binding
energies for both lead and mercury isotopes [44]. The rms
deviation is 1.3 MeV and 1.1 MeV for 198–214Pb and
201–208Hg, respectively, a comparable performance to the
widely used NR-DFT functional UNEDF1 [45] (1.4 MeV
and 1.0 MeV for lead and mercury, respectively [35]). The
binding and separation energy descriptions of all of the
employed CEDFs will be discussed in detail in Ref. [42].
Two different procedures labeled as “LES” and “EGS”

are used for the blocking in odd-A nuclei, and the results of
the respective calculations are labeled by the “Functional-
Procedure” labels (for example, DD-ME2-EGS). In the
LES procedure, the lowest in energy configuration is used,
which is similar to all earlier calculations of OES [6,46]. In
the EGS procedure, the configuration with the spin and
parity of the blocked state corresponding to those of the
experimental ground state is employed, although it is not
necessarily the lowest in energy. For example, in the RHB
(DD-ME2) calculations, the EGS configurations with a
blocked ν2g9=2 state are located at excitation energies of

137 keV, 122 keV, and 96 keV above the ground-state

configurations with a blocked ν1i11=2 state in 209;211;213Pb.

At first glance, this contradicts experimental findings that
the ground state is based on the ν2g9=2 orbital in odd-A lead

isotopes with N > 126. However, particle-vibration cou-
pling (PVC) lowers the energy of this state below that of the
ν1i11=2 one (see Fig. 5 in Ref. [47]) so that it becomes the

lowest in energy in the PVC calculations. Note that PVC
significantly improves the accuracy of the description of the

FIG. 2. Sample hyperfine spectra for 206–208Hg, with the photo-
ion rate measured using the MR-ToF MS. The centroids are
indicated with black lines; red lines represent fitting with Voigt
profiles.

TABLE I. The δνA;198 values in the 253.65-nm line from this

Letter and the literature, δhr2iA;198 values are calculated as
described in the Supplemental Material [34]. Statistical uncer-
tainties are shown in parentheses and systematic uncertainties in
curly brackets.

Isotope A Iπ δνA;198 (MHz) δhr2iA;198 (fm2) Reference

202 0 −10 100(180) 0.197ð3Þf14g This Letter
−10 102.4(42) 0.1973ð1Þf138g [16]

203 5=2− −11 870(200) 0.232ð4Þf16g This Letter
−11 750(180) 0.2295ð35Þf161g [16]

206 0 −20 930(160) 0.409ð3Þf29g This Letter
−20 420(80) 0.3986ð16Þf280g [16,39]

207 (9=2−) −25 790(190) 0.503ð4Þf35g This Letter
208 −32 030(160) 0.624ð3Þf44g This Letter
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energies of experimental states in model calculations
[47,48]. However, it is neglected in the present study since
its impact on charge radii is still an open theoretical question.
The results of the RHB and NR-HFB calculations are

presented in Fig. 3, together with the experimental results
for the lead and mercury chains. In both cases, the kink at
N ¼ 126 is visibly better reproduced in the RHB (DD-
ME2) calculations. To facilitate a quantitative comparison
of the experimental and theoretical results, two indicators
are employed. OES is quantified considering the isotope’s
nearest neighbors via the commonly used three-point
indicator

Δhr2ið3ÞðAÞ ¼
1

2
½hr2ðA − 1Þi þ hr2ðAþ 1Þi − 2hr2ðAÞi�:

ð1Þ

To quantify the shell effect at N ¼ 126, the kink
indicator of Ref. [8] is used which considers the isotope’s
next-to-nearest neighbors, and it is defined as

ΔRð3ÞðAÞ ¼
1

2
½RðA − 2Þ þ RðAþ 2Þ − 2RðAÞ�; ð2Þ

where RðAÞ ¼ hr2i1=2ðAÞ is the charge radius of the isotope
with mass A of the element under consideration. Note that
the kink indicator is independent of the blocking procedure
in odd-A nuclei, and therefore, we omit the corresponding
specifications (LES or EGS) in the discussion of the kink.
In Fig. 4, we present the Δhr2ið3ÞðAÞ and ΔRð3ÞðAÞ

values calculated from the experimental results and theo-
retical calculations for both lead and mercury. The

ΔRð3ÞðAÞ values are listed in the Supplemental Material
[34]. It is evident in Figs. 4(a) and 4(b) that the magnitudes
of the kinks in the isotopic chains are comparable,
suggesting that the kink at N ¼ 126 is broadly insensitive

to the change of the occupied proton states when crossing
Z ¼ 82 (π2d3=2 in mercury and π3s1=2 in lead). In addition,

the RHB (DD-ME2) calculations best reproduce the kink,
while the NR-HFB (M3Y-P6a) and NR-HFB (Fy(Δr) [8])
results underestimate and overestimate its magnitude,
respectively. It is worth noting that both the RHB (DD-
ME2) and NR-HFB (M3Y-P6a) approaches are reasonably
successful in the reproduction of the absolute charge radius

values for 206Hg and 208Pb; the details are included in the
Supplemental Material [34].
In both approaches, the OES is best reproduced if the

EGS procedure is applied [see Figs. 4(c), 4(d), and 5]. If the
LES procedure is applied, the experimental OES is sig-
nificantly underestimated for all nuclei under study in the
RHB calculations and for N < 126 nuclei in the NR-HFB
calculations. Note that, for simplicity, we show only NR-
HFB results with both procedures in Figs. 4(c) and 4(d).
For a better understanding of the underlying mechanisms

of both the kink and OES, we also performed RHB
calculations without pairing for lead isotopes. The labels
identifying such results contain “np.” Significantly, a kink
is still present in the results as depicted in Fig. 4(a) due to

(a) (b)

FIG. 3. Panels (a) and (b) show δhr2iA;A
0
of lead and mercury

isotopes relative to 208Pb and 206Hg (N ¼ 126), respectively.
Experimental mercury data: this Letter and Ref. [16]. Experi-
mental lead data: Ref. [18]. The statistical uncertainties are
smaller than the data points. RHB(DD-ME2) results: this Letter.
NR-HFB(M3Y-P6a) results: this Letter (mercury) and Ref. [14]
(lead). NR-HFB(UNEDF1) results: Ref. [35].

(a) (b)

(c) (d)

FIG. 4. Comparison of experimental and theoretical ΔRð3ÞðAÞ

and Δhr2ið3ÞðAÞ values for isotopes of lead (a) and (c), respec-
tively and mercury (b) and (d), respectively. Experimental values
are taken from this Letter and from Ref. [16] (mercury) and
Ref. [18] (lead). The RHB (DD-ME2) and NR-HFB (M3Y-P6a)
results are obtained in this Letter, and the NR-HFB results with
FyðΔrÞ and UNEDF1 are taken from Refs. [8,35], respectively.
Experimental uncertainty is depicted as translucent gray bars in
(a) and (b), and as error bars in (c) and (d).
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the occupation of the ν1i11=2 orbital. This indicates an
alternative mechanism to the one based on gradient terms in
pairing interactions [6,8].
The RHB results with and without pairing are compared

via Δhr2ið3ÞðAÞ in Fig. 5. OES appears in these calculations
(the curves labeled as “DD-ME2-EGS” and “DD-ME2-np-
EGS”) under the condition that, in odd-A nuclei, the EGS
procedure is used. One can see that the inclusion of pairing
somewhat reduces this effect. However, OES is mostly
absent if the LES procedure is used in odd-A nuclei.
Let us consider the lead isotopes with N ≥ 126

for a more detailed discussion of the origin of OES in
the calculations without pairing. By designating the

ground state of 208Pb as a “core” and noting that PVC
lowers the energy of the ν2g9=2 state below ν1i11=2 in odd-A

nuclei [47], the sequence of the ground states in the

N ≥ 126 nuclei can be described as core (208Pb),

core ⊗ νð2g9=2Þ
1 (209Pb), core ⊗ νð2i11=2Þ

2 (210Pb), core ⊗

νð2i11=2Þ
2ð2g9=2Þ

1 (211Pb), and so on in the relativistic

calculations without pairing. The ν1i11=2 orbital has a

smaller rms radius than the ν2g9=2 orbital. However,

because of the isovector nature of nuclear forces, its
occupation leads to a larger charge radius as compared
with the occupation of the ν2g9=2 orbital. Thus, the

staggering in their occupation between odd and even
isotopes results in the OES seen in Fig. 5.
On the contrary, in the majority of conventional non-

relativistic functionals, the ν2g9=2 orbital is lower in energy
than the ν1i11=2 orbital. This is in agreement with exper-

imental data on the structure of the ground states in odd-
mass nuclei, but it creates a problem in the description of
the kinks. In addition, in calculations with and without
pairing, this leads to the sole or predominant occupation of
the ν2g9=2 state in even-even and odd-even nuclei with N >

126 and thus to a negligible or comparatively small OES.
To address this, several prescriptions have been suggested
over the years to increase the occupation of the ν1i11=2

orbital in theN > 126 lead nuclei. One approach includes a
modification of the spin-orbit interaction, leading either to
the inversion of the relative energies of these two states or
to their proximity in energy [11,49–53]. The NR-HFB
results with M3Y-P6a shown in Figs. 3 and 4 are also based
on a modification of the spin-orbit interaction, with the
inclusion of a density-dependent term in the spin-orbit
channel. Alternatively, the so-called Fayans functionals
employ a specific form of the pairing interaction containing
a gradient term [6,8,46,54]. Although this improves the
general description of experimental data, discrepancies
between theory and experiment still exist in the lead and
tin isotopic chains [8]. Moreover, pairing becomes a
dominant contributor to the kink and OES [8].
The present RHB interpretation of the kinks and OES

differs from that suggested in Ref. [8], which is based on
nonrelativistic Skyrme and Fayans functionals. In the RHB
approach, the kink and OES are already present in the
calculations without pairing. Thus, the evolution of charge
radii with neutron number depends significantly on the
mean-field properties. Pairing acts only as an additional
tool that mixes different configurations and somewhat
softens the evolution of charge radii as a function of
neutron number.
In conclusion, the determination of the δhr2iA;A

0
of

207;208Hg has revealed a kink at N ¼ 126 in the mercury
nuclear charge radii systematics, with a magnitude com-
parable to that in the lead isotopic chain. These new data
have been analyzed via both RHB and NR-HFB
approaches, together with the traditional magic-Z theoreti-
cal benchmark of the lead isotopic chain. We demonstrate
that the kinks at the N ¼ 126 shell closure and the OES in
the vicinity are currently best described in the RHB
approach without any readjustment of the parameters
defined in Ref. [55]. According to the RHB calculations,

the kink at N ¼ 126 in δhr2iA;A
0
originates from the

occupation of the ν1i11=2 orbital located above theN ¼ 126

shell gap. A new mechanism for OES is suggested, related
to the staggering in the occupation of neutron orbitals
between odd and even isotopes and facilitated by PVC in
odd-mass nuclei. Thus, contrary to previous interpretations,
it is determined that both the kink and OES in charge radii
can be defined predominantly in the particle-hole channel.
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