28 research outputs found
Decoherence, einselection, and the quantum origins of the classical
Decoherence is caused by the interaction with the environment. Environment
monitors certain observables of the system, destroying interference between the
pointer states corresponding to their eigenvalues. This leads to
environment-induced superselection or einselection, a quantum process
associated with selective loss of information. Einselected pointer states are
stable. They can retain correlations with the rest of the Universe in spite of
the environment. Einselection enforces classicality by imposing an effective
ban on the vast majority of the Hilbert space, eliminating especially the
flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase
space emerges from the quantum Hilbert space in the appropriate macroscopic
limit: Combination of einselection with dynamics leads to the idealizations of
a point and of a classical trajectory. In measurements, einselection replaces
quantum entanglement between the apparatus and the measured system with the
classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart
from the changes introduced in the editorial process the text is identical
with that in the Rev. Mod. Phys. July issue. Also available from
http://www.vjquantuminfo.or
Genetic Ablation of Bcl-x Attenuates Invasiveness without Affecting Apoptosis or Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Cancer
Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-xL, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic β-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-xL upon exogenous over-expression