494 research outputs found

    Skeletal Muscle NADPH Oxidase Is Increased and Triggers Stretch-Induced Damage in the mdx Mouse

    Get PDF
    Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91phox, p67phox and rac 1 were increased 2–3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91phox and p67phox were increased 3–4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67phox,which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca2+ rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca2+ entry, a key mechanism for muscle damage and functional impairment

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    From international health to global health: how to foster a better dialogue between empirical and normative disciplines.

    Get PDF
    BACKGROUND: Public health recommendations are usually based on a mixture of empirical evidence and normative arguments: to argue that authorities ought to implement an intervention that has proven effective in improving people's health requires a normative position confirming that the authorities are responsible for improving people's health. While public health (at the national level) is based on a widely accepted normative starting point - namely, that it is the responsibility of the state to improve people's health - there is no widely accepted normative starting point for international health or global health. As global health recommendations may vary depending on the normative starting point one uses, global health research requires a better dialogue between researchers who are trained in empirical disciplines and researchers who are trained in normative disciplines. DISCUSSION: Global health researchers with a background in empirical disciplines seem reluctant to clarify the normative starting point they use, perhaps because normative statements cannot be derived directly from empirical evidence, or because there is a wide gap between present policies and the normative starting point they personally support. Global health researchers with a background in normative disciplines usually do not present their work in ways that help their colleagues with a background in empirical disciplines to distinguish between what is merely personal opinion and professional opinion based on rigorous normative research. If global health researchers with a background in empirical disciplines clarified their normative starting point, their recommendations would become more useful for their colleagues with a background in normative disciplines. If global health researchers who focus on normative issues used adapted qualitative research guidelines to present their results, their findings would be more useful for their colleagues with a background in empirical disciplines. Although a single common paradigm for all scientific disciplines that contribute to global health research may not be possible or desirable, global health researchers with a background in empirical disciplines and global health researchers with a background in normative disciplines could present their 'truths' in ways that would improve dialogue. This paper calls for an exchange of views between global health researchers and editors of medical journals

    Multi-stakeholder process of co-designing small-scale fisheries policy in South Africa.

    Get PDF
    In 2005, a group of researchers, community-based organizations and lawyers got together with small-scale fishers to launch a class action law suit against the government of South Africa in its allocation system of Individual Transferable Quotas, on the ground that the system was unfair to small-scale fishing communities and threatened their right to practise their livelihoods. This effort resulted in the cabinet adoption of a new small-scale fisheries policy in 2014, with amendments being made to fisheries law (the Marine Living Resource Act 18 of 1998) to accommodate the issues and concerns of small-scale fisheries. Draft regulations and an implementation plan have recently been released, paving the way for the implementation of small-scale fisheries allocations in 2016. These legal and policy shifts are of great significance for small-scale fisheries, both in South Africa and elsewhere, and deserve careful examination. This paper discusses the processes leading to the development of a new small-scale fisheries policy and what has followed since. Specifically, the analysis focuses on a variety of collaborations between scholars from different disciplines; researchers from multiple fields; community practitioners representing diverse professional and community perspectives; and community organizations across local, state, national and international levels. The paper uses a model of change that crosses research and practitioner boundaries based on three key strategies: getting noticed; organizing at scale; and getting a seat at the negotiation table. It also considers the “transdisciplinary” process of involving all relevant actors in strategic, collective, reflection–action–reflection–action “from below”, which was crucial in the co-designing of this small-scale policy formulation in South Africa

    Dual FGF-2 and Intergrin α5ÎČ1 Signaling Mediate GRAF-Induced RhoA Inactivation in a Model of Breast Cancer Dormancy

    Get PDF
    Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin α5ÎČ1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin α5ÎČ1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin α5ÎČ1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin α5ÎČ1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin α5ÎČ1 by fibronectin

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore