173 research outputs found

    Transcriptionally active chromatin loops contain both ‘active’ and ‘inactive’ histone modifications that exhibit exclusivity at the level of nucleosome clusters

    Get PDF
    Chromatin state is thought to impart regulatory function to the underlying DNA sequence. This can be established through histone modifications and chromatin organisation, but exactly how these factors relate to one another to regulate gene expression is unclear. In this study, we have used super-resolution microscopy to image the Y loops of Drosophila melanogaster primary spermatocytes, which are enormous transcriptionally active chromatin fibres, each representing single transcription units that are individually resolvable in the nuclear interior. We previously found that the Y loops consist of regular clusters of nucleosomes, with an estimated median of 54 nucleosomes per cluster with wide variation. In this study, we report that the histone modifications H3K4me3, H3K27me3, and H3K36me3 are also clustered along the Y loops, with H3K4me3 more associated with diffuse chromatin compared to H3K27me3. These histone modifications form domains that can be stretches of Y loop chromatin micrometres long, or can be in short alternating domains. The different histone modifications are associated with different sizes of chromatin clusters and unique morphologies. Strikingly, a single chromatin cluster almost always only contains only one type of the histone modifications that were labelled, suggesting exclusivity, and therefore regulation at the level of individual chromatin clusters. The active mark H3K36me3 is more associated with actively elongating RNA polymerase II than H3K27me3, with polymerase often appearing on what are assumed to be looping regions on the periphery of chromatin clusters. These results provide a foundation for understanding the relationship between chromatin state, chromatin organisation, and transcription regulation – with potential implications for pause-release dynamics, splicing complex organisation and chromatin dynamics during polymerase progression along a gene

    Carbapenemase-producing Enterobacteriaceae in hospital wastewater:a reservoir that may be unrelated to clinical isolates [star]

    Get PDF
    Summary Background: Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging infection control problem in hospitals worldwide. Identifying carriers can help reduce potential spread and infections. Aim: To assess whether testing hospital wastewater for CPE can supplement patient based screening for infection prevention purposes in a hospital without a recognised endemic CPE problem. Methods: Wastewater collected from hospital pipework on 16 occasions during February-March 2014 was screened for CPE using chromID®CARBA agar and chromID®CPS agar with a 10 μg ertapenem disc and combination disc testing. MICs were determined using British Society for Antimicrobial Chemotherapy methodology and carbapenemase genes detected by PCR or wholegenome sequencing. Selected isolates were typed by PFGE. Findings: Suspected CPE were recovered from all 16 wastewater samples. Of 17 isolates sent to Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, six (four Citrobacter freundii and two Enterobacter cloacae complex) were New Delhi metallo–beta-lactamase (NDM) producers and the remaining 11 (six Klebsiella oxytoca and five Enterobacter cloacae complex), Guiana-Extended-Spectrum-5 (GES-5) producers, the first to be described in Enterobacteriaceae in the UK. The four NDM-producing C. freundii, two NDM-producing E. cloacae complex and 4/5 GES-5-producing E. cloacae complex were each indistinguishable isolates of the same three strains, whereas the six GES-5-producing K. oxytoca overall shared 79% similarity. Conclusion: CPE are readily isolated from hospital wastewater using simple culture methods. There are either undetected carriers of CPE excreting into the wastewater, or these CPE represent colonisation of the pipework. Surveillance of hospital wastewater for CPE does not appear helpful for infection control purposes

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Evaluation of pseudoephedrine pharmacy sales before and after mandatory recording requirements in Western Australia: a case study

    Get PDF
    Background: A community pharmacy real-time electronic recording program, ProjectSTOP, enables Australian community pharmacists to verify pseudoephedrine requests. In Western Australia the program was available for voluntary use from April 2007 and became mandatory November 2010. This case study explores the effectiveness of the program by reviewing the total requests for pseudoephedrine products, and the proportion of requests which were classified as ‘denied sales’ before and after mandatory implementation. Seasonal and annual trends in these measures are also evaluated. Methods: ProjectSTOP data recordings for Western Australia pharmacies between 1 December 2007 and 28 February 2014 were analysed. Data included a de-identified pharmacy number and date of each pseudoephedrine product request. The total number of requests and sale classification (allowed, denied, safety, or not recorded) were calculated for each month/pharmacy. The potential influence of mandatory reporting using ProjectSTOP was investigated using a Regression Discontinuity Design. Correlations between sales from the same pharmacy were taken into account by classifying the pharmacy number as a random effect. The main effects of year (continuous variable), and season (categorical variable) were also included in the model. Results: There was a small but steady decline in the total requests for pseudoephedrine per month per 100,000 population (per pharmacy) from the time of mandatory reporting. The number of denied sales showed a steady increase up until mandatory reporting, after which it showed a significant decline over time. Total sales were heavily influenced by season, as expected (highest in winter, least in summer). The seasonal pattern was less pronounced for denied sales, which were highest in winter and similar across other seasons. The pattern over time for safety sales was similar to that for denied sales, with a clear change occurring around the time of mandatory reporting. Conclusion: Results indicate a decrease in pseudoephedrine product requests in Western Australia community pharmacies. Findings suggest ProjectSTOP has been successful in addressing suspicious sales and potential diversion however ongoing data review is recommended

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Global Gene Expression Analysis of Murine Limb Development

    Get PDF
    Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ∼30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis
    corecore