165 research outputs found

    A. Lincoln and His Residence

    Get PDF
    The object is a reproduction of a J. A. Whipple photograph (taken ca. 1860) of Abraham Lincoln\u27s Springfield Home. [Ref; O-38.]https://scholarsjunction.msstate.edu/fvw-photographs/1524/thumbnail.jp

    Biobanks in the United States: How to Identify an Undefined and Rapidly Evolving Population

    Get PDF
    As part of a larger organizational study, we sought to survey biobanks in the United States. However, we encountered two problems with this population. First, no common definition of biobanks exists. Second, no census is available of these facilities from which to sample in order to implement a survey. In light of these problems, we employed a multifaceted approach using electronic searches of PubMed, RePORTER, and Google. In addition, we systematically searched for biobanks housed within universities that have NIH-designated Clinical and Translational Science Awards (CTSA). We expanded this part of the search by looking for biobanks among all members of the American Association of Medical Colleges (AAMC). Finally, we added banks to our database found previously by other researchers and banks found via correspondence with our colleagues. Our search strategy produced a database of 624 biobanks for which we were able to confirm contact information in order to conduct our online survey. Another 140 biobanks were identified but did not respond to our requests to confirm their existence or contact information. In order to maximize both the uniqueness of banks found and the greatest return on effort for each search, we suggest targeting resources that are already organized. In our work, these included the CTSA, AAMC, and part of the Google searches. We contend that our search provides a model for analysis of new fields of research and/or rapidly evolving industries. Furthermore, our approach demonstrates that with the appropriate tools it is possible to develop a systematic and comprehensive database to investigate undefined populations

    Functional Integration of Ecological Networks through Pathway Proliferation

    Full text link
    Large-scale structural patterns commonly occur in network models of complex systems including a skewed node degree distribution and small-world topology. These patterns suggest common organizational constraints and similar functional consequences. Here, we investigate a structural pattern termed pathway proliferation. Previous research enumerating pathways that link species determined that as pathway length increases, the number of pathways tends to increase without bound. We hypothesize that this pathway proliferation influences the flow of energy, matter, and information in ecosystems. In this paper, we clarify the pathway proliferation concept, introduce a measure of the node--node proliferation rate, describe factors influencing the rate, and characterize it in 17 large empirical food-webs. During this investigation, we uncovered a modular organization within these systems. Over half of the food-webs were composed of one or more subgroups that were strongly connected internally, but weakly connected to the rest of the system. Further, these modules had distinct proliferation rates. We conclude that pathway proliferation in ecological networks reveals subgroups of species that will be functionally integrated through cyclic indirect effects.Comment: 29 pages, 2 figures, 3 tables, Submitted to Journal of Theoretical Biolog

    The eck fistula in animals and humans

    Get PDF
    In all species so far studied, including man, portacaval shunt causes the same changes in liver morphology, including hepatocyte atrophy, fatty infiltration, deglycogenation, depletion and disorganization of the rough endoplasmic reticulum (RER) and its lining polyribosomes and variable but less specific damage to other organelles. Many, perhaps all, biosynthetic processes are quickly depressed, largely secondary to the selective damage to the RER, which is the "factory" of the cell. These structural and metabolic changes in the liver after portal diversion are caused by the diversion around the liver of the hepatotrophic substances in portal venous blood, of which endogenous insulin is the most important. In experimental animals, the injury of Eck's fistula can be prevented by infusing insulin into the tied-off hilar portal vein. The subtle but far-reaching changes in hepatic function after portal diversion have made it possible to use this procedure in palliating three inborn errors of metabolism: glycogen storage disease, familial hypercholesterolemia, and α1-antitrypsin deficiency In these three diseases, the abnormalities caused by portal diversion have counteracted abnormalities in the patients that were caused by the inborn errors. In these diseases, amelioration of the inborn errors depends on the completeness of the portal diversion. In contrast, total portal diversion to treat complications of portal hypertension is undesirable and always will degrade hepatic function if a significant amount of hepatopetal portal venous blood is taken from the liver. When total portal diversion is achieved (and this is to be expected after all conventional shunts), the incidence of hepatic failure and hepatic encephalopathy is increased. If portal diversion must be done for the control of variceal hemorrhage, a selective procedure such as the Warren procedure is theoretically superior to the completely diverting shunt. In practice, better patient survival has not been achieved after selective shunts than after conventional shunts, but the incidence of hepatic encephalopathy has been less. © 1983 Year Book Medical Publishers, Inc

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication
    • …
    corecore