3,047 research outputs found

    Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances

    Full text link
    We present a framework for obtaining explicit bounds on the rate of convergence to equilibrium of a Markov chain on a general state space, with respect to both total variation and Wasserstein distances. For Wasserstein bounds, our main tool is Steinsaltz's convergence theorem for locally contractive random dynamical systems. We describe practical methods for finding Steinsaltz's "drift functions" that prove local contractivity. We then use the idea of "one-shot coupling" to derive criteria that give bounds for total variation distances in terms of Wasserstein distances. Our methods are applied to two examples: a two-component Gibbs sampler for the Normal distribution and a random logistic dynamical system.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ238 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk

    Full text link
    The conjecture that the scaling limit of the two-dimensional self-avoiding walk (SAW) in a half plane is given by the stochastic Loewner evolution (SLE) with κ=8/3\kappa=8/3 leads to explicit predictions about the SAW. A remarkable feature of these predictions is that they yield not just critical exponents, but probability distributions for certain random variables associated with the self-avoiding walk. We test two of these predictions with Monte Carlo simulations and find excellent agreement, thus providing numerical support to the conjecture that the scaling limit of the SAW is SLE8/3_{8/3}.Comment: TeX file using APS REVTeX 4.0. 10 pages, 5 figures (encapsulated postscript
    • …
    corecore