73 research outputs found

    Breathing Games – A free/libre/open source initiative to create open content on respiratory health

    Get PDF
    Breathing Games brings together and share resources to make knowledge and technology in respiratory health playful, accessible, and customizable

    Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.

    Get PDF
    BACKGROUND The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representations of their limbs (e.g., a cursor). These 2D screens lack depth cues, potentially deteriorating movement quality and increasing cognitive load. Head-mounted displays (HMDs) have great potential to provide naturalistic movement visualization by incorporating improved depth cues, reduce visuospatial transformations by rendering movements in the space where they are performed, and preserve eye-hand coordination by showing an avatar-with immersive VR (IVR)-or the user's real body-with augmented reality (AR). However, elderly populations might not find these novel technologies usable, hampering potential motor and cognitive benefits. METHODS We compared movement quality, cognitive load, motivation, and system usability in twenty elderly participants (>59 years old) while performing a dual motor-cognitive task with different visualization technologies: IVR HMD, AR HMD, and a 2D screen. We evaluated participants' self-reported cognitive load, motivation, and usability using questionnaires. We also conducted a pilot study with five brain-injured patients comparing the visualization technologies while using an assistive device. RESULTS Elderly participants performed straighter, shorter duration, and smoother movements when the task was visualized with the HMDs than screen. The IVR HMD led to shorter duration movements than AR. Movement onsets were shorter with IVR than AR, and shorter for both HMDs than the screen, potentially indicating facilitated reaction times due to reduced cognitive load. No differences were found in the questionnaires regarding cognitive load, motivation, or usability between technologies in elderly participants. Both HMDs proved high usability in our small sample of patients. CONCLUSIONS HMDs are a promising technology to be incorporated into neurorehabilitation, as their more naturalistic movement visualization improves movement quality compared to conventional screens. HMDs demonstrate high usability, without decreasing participants' motivation, and might potentially lower cognitive load. Our preliminary clinical results suggest that brain-injured patients may especially benefit from more immersive technologies. However, larger patient samples are needed to draw stronger conclusions.*

    Evolution of olivine lattice preferred orientation during simple shear in the mantle

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 272 (2008): 501-512, doi:10.1016/j.epsl.2008.03.063.Understanding the variation of olivine lattice preferred orientation (LPO) as a function of shear strain is important for models that relate seismic anisotropy to the kinematics of deformation. We present results on the evolution of olivine orientation as a function of shear strain in samples from a shear zone in the Josephine Peridotite (southwest Oregon). We find that the LPO in harzburgites re-orients from a pre-existing LPO outside the shear zone to a new LPO with the olivine [100] maximum aligned sub-parallel to the shear direction between 168% and 258% shear strain. The strain at which [100] aligns with the shear plane is slightly higher than that observed in experimental samples, which do not have an initial LPO. While our observations broadly agree with the experimental observations, our results suggest that a pre-existing LPO influences the strain necessary for LPO alignment with the shear direction. In addition, olivine re-alignment appears to be dominated by slip on both (010)[100] and (001)[100], due to the orientation of the pre-existing LPO. Fabric strengths, quantified using both the J- and M- indices, do not increase with increasing shear strain. Unlike experimental observations, our natural samples do not have a secondary LPO peak. The lack of a secondary peak suggests that subgrain rotation recrystallization dominates over grain boundary migration during fabric re-alignment. Harzburgites exhibit girdle patterns among [010] and [001] axes, while a dunite has point maxima. Combined with the observation that harzburgites are finer grained than dunites, we speculate that additional phases (i.e., pyroxenes) limit olivine grain growth and promote grain boundary sliding. Grain boundary sliding may relax the requirement for slip on the hardest olivine system, enhancing activation of the two easiest olivine slip systems, resulting in the [010] and [001] girdle patterns. Overall, our results provide an improved framework for calibration of LPO evolution models.This work was partly supported by NSF grants EAR-0230267 and EAR-0409609. Funding for fieldwork was provided by the WHOI Academic Programs Office as part of a 2003 field class run by P.B.K. and G.H

    Congruency of Information Rather Than Body Ownership Enhances Motor Performance in Highly Embodied Virtual Reality

    Get PDF
    In immersive virtual reality, the own body is often visually represented by an avatar. This may induce a feeling of body ownership over the virtual limbs. Importantly, body ownership and the motor system share neural correlates. Yet, evidence on the functionality of this neuroanatomical coupling is still inconclusive. Findings from previous studies may be confounded by the congruent vs. incongruent multisensory stimulation used to modulate body ownership. This study aimed to investigate the effect of body ownership and congruency of information on motor performance in immersive virtual reality. We aimed to modulate body ownership by providing congruent vs. incongruent visuo-tactile stimulation (i.e., participants felt a brush stroking their real fingers while seeing a virtual brush stroking the same vs. different virtual fingers). To control for congruency effects, unimodal stimulation conditions (i.e., only visual or tactile) with hypothesized low body ownership were included. Fifty healthy participants performed a decision-making (pressing a button as fast as possible) and a motor task (following a defined path). Body ownership was assessed subjectively with established questionnaires and objectively with galvanic skin response (GSR) when exposed to a virtual threat. Our results suggest that congruency of information may decrease reaction times and completion time of motor tasks in immersive virtual reality. Moreover, subjective body ownership is associated with faster reaction times, whereas its benefit on motor task performance needs further investigation. Therefore, it might be beneficial to provide congruent information in immersive virtual environments, especially during the training of motor tasks, e.g., in neurorehabilitation interventions

    Analytical Parametrization of Self-Consistent Polycrystal Mechanics: Fast Calculation of Upper Mantle Anisotropy

    Get PDF
    Progressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystallographic preferred orientation or CPO) whose observable signatures include shear-wave splitting and azimuthal dependence of surface wave speeds. Comparison of these signatures with mantle flow models thus allows mantle dynamics to be unraveled on global and regional scales. However, existing self-consistent models of CPO evolution are computationally expensive when used in 3-D and/or time-dependent convection models. Here we propose a new method, called ANPAR, which is based on an analytical parameterisation of the crystallographic spin predicted by the second-order (SO) self-consistent theory. Our parameterisation runs approximately 2-6x10^4 times faster than the SO model and fits its predictions for CPO and crystallographic spin with a variance reduction > 99%. We illustrate the ANPAR model predictions for the deformation of olivine with three dominant slip systems, (010)[100], (001)[100] and (010)[001], for three uniform deformations (uniaxial compression, pure shear, simple shear) and for a corner-flow model of a spreading mid-ocean ridge

    The initiation and development of metamorphic foliation in the Otago Schist, Part 2: evidence from quartz grain-shape data

    Get PDF
    Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape-preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub-greenschist facies conditions as part of a composite S1-bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution?precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade-shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest-grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz- and mica-rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz-rich layers rather than individual grains. In higher-grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO

    Benzodithiophene and benzotrithiophene as \ucf\u80 cores for two-and three-blade propeller-shaped ferrocenyl-based conjugated systems

    Get PDF
    The syntheses of linear and star-shaped bis- and tris(ferrocenyl) derivatives of benzo[1,2-b:4,5-b\u2032]dithiophene and benzo[1,2-b:3,4-b\u2032:5,6-b\u2032\u2032]trithiophene are achieved through one-pot CuI/TMEDA-catalyzed (TMEDA = tetramethylethylenediamine) multiple annulations of bromoethynylbenzenes with sodium sulfide. In addition, the preparation of the parent benzotrithiophene in a good yield with a short reaction time is achieved through the threefold annulation of 1,3,5-trifluoro- Introduction Benzo[b]thiophene (BT, Scheme 1) and its derivatives are an important class of fused thiophene compounds owing to their wide range of biological properties[1,2] and various applications in materials science.[3] Scheme 1. Fused thiophene compounds: benzo[b]thiophene (BT), benzo- [1,2-b:4,5-b\u2032]dithiophene (BDT), and benzo[1,2-b:3,4-b\u2032:5,6-b\u2032\u2032]trithiophene (BTT). In particular, (multi)thiophene fused aromatic compounds are attracting interest as promising electronic materials for organic conductors,[4] organic light-emitting diodes,[5] photovoltaic cells,[6] and field-effect transistors.[7] For this reason, thiophene- based \u3c0-conjugated oligomers have been investigated widely as organic semiconductors.[8] Recently, much effort has been focused on benzo[1,2-b:4,5-b\u2032]- dithiophene (BDT) and benzo[1,2-b:3,4-b\u2032:5,6-b\u2032\u2032]trithiophene (BTT, Scheme 1) as potential \u3c0 cores for a new class of organic semiconductors as they contain two or three identical thiophene moieties with C2h or C3h symmetries that enable twoand three-dimensional molecular extensions. [a] Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy E-mail: [email protected] http://www.chimica.unipd.it/ Supporting information and ORCID(s) from the author(s) for this article are available on the WWW under https://doi.org/10.1002/ejoc.201701045. Eur. J. Org. Chem. 2017, 5966\u20135974 5966 \ua9 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2,4,6-tris(trimethylsilyl)ethynylbenzene. The computed structural and electronic features of these ferrocenyl derivatives as well as their UV/Vis spectra and electrochemistry are discussed, and the results provide insights into the effect of the presence of three rather than two ferrocenyl units. To the best of our knowledge, 2,5,8-tris(ferrocenyl)benzo[1,2-b;3,4-b\u2032;5,6-b\u2032\u2032]trithiophene is the first organometallic complex containing benzotrithiophene

    Plant defence peptides

    Get PDF
    Eight families of antimicrobial peptides, ranging in size from 2 to 9 kD, have been identified in plants. These are thionins, defcnsins, so-called lipid iransfer proteins, hevein- and knottin-Iike peptides, MBPJ, lb AMP, and the recently reported snakins. All of them have compact structures that are stabilized by 2-6 disulfide bridges. They are part of both permanent and inducible defense barriers. Transgenic overe.xpression of the corresponding genes leads to enhanced tolerance to pathogens, and peptide-sensitive pathogen mutants have reduced virulence

    Mutual care taking: collectively creating our respiratory wellbeing with open sciences

    Get PDF
    Background: Worldwide, 6 people out of 10 have no access to treatment, or are not encouraged to follow it. Air pollution alone kills 7 million people yearly, reduces our life expectancy by 20 months, and costs 6% the gross world product. Devices to assess lung capacity remain often unavailable in low / middle income countries. Actions: We co-create inclusive, open science knowledge: open source breath and air quality controllers, and libre / gratis education to reduce risks and make care fun. Learnings: Awareness: breath as a way to feel life, from childhood. Universal health: mutualizing resources to end poverty. Partnership: reducing barriers with remote participation
    • …
    corecore