174 research outputs found

    A two-phase inspection policy with imperfect testing

    Get PDF
    This paper presents an inspection policy to detect failures of a single component system that remain hidden otherwise. Inspection reveals whether the unit is in good or failed state. The possibility of non perfect testing is assumed, thus, successive inspections may fail detecting a failure or result in a false alarm. The occurrence of false alarms is reported in optical fire detectors and inspection of printing circuit boards which are on the basis of electronic systems. A two-phase inspection schedule takes into account the changes in component’s aging. The system may undergo different inspection frequencies to detect both early failures or those due to the natural deterioration in the system as time goes by. The examples reveal the advantages of a two-phase inspection when comparing with the unique interval inspection

    An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs

    Get PDF
    In this paper we consider the inspection and maintenance of a system under two types of age-dependent failures, revealed minor failures (R) and unrevealed catastrophic failures (U). Periodic inspections every T units of time are carried out to detect U failures, leading to the system replacement when one is discovered. R failures are followed by a minor repair. In addition the system is preventively replaced at MT or after the Nth R failure whichever comes first. The costs of minimal repair and replacement after N minor failures depend on age and history of failures. Non-perfect inspections are assumed, providing false positives when no U failure has happened or false negatives when a U failure is present. The long-run cost per unit of time along with the optimum policy (T*, M*, N*) are obtained. We explore conditions under which both strategies of preventive maintenance are profitable, comparing with suboptimal policies when only one of them is performed. Maintenance of infrastructures illustrates the model conditions

    Conditional inspection and maintenance of a system with two interacting components

    Get PDF
    In this paper we consider the inspection and maintenance of a two-component system with stochastic dependence. A failure of component 1 may induce the defective state in component 2 which in turn leads to its failure. A failure of component 1 and a defect in component 2 are detected by inspection. Our model considers a conditional inspection policy: when component 1 is found to have failed, inspection of component 2 is triggered. This opportunistic inspection policy is a natural one to use given this stochastic dependence between the components. The long-run cost per unit time (cost-rate) of the conditional inspection policy is determined generally. A real system that cuts rebar mesh motivates the model development. The numerical examples reveal that when the ratio of the cost of corrective system replacement, that is on failure, to the cost of preventive system replacement is large there exists a finite optimum policy in most cases. Moreover, for the studied system wherein inspections of component 2 are expensive relative to those of component 1, having a reliable indicator of the defective state in component 2 is a good strategy to avoid costly failures of component 2, particularly when its time to failure is short

    A study of postponed replacement in a delay time model

    Get PDF
    We develop a delay time model for a one component system with postponed replacement to analyze situations in which maintenance might not be executed immediately upon discovery of a defect in the system. Reasons for postponement are numerous: to avoid production disruption or unnecessary or ineffective replacement; to prepare for replacement; to extend component life; to wait for an opportunity. This paper explores conditions that make postponement cost-effective. We are interested in modelling the reality in which a maintainer either prioritizes functional continuity or is not confident of the inspection test indicating a defective state. In some cases more frequent inspection and a longer time limit for postponement are recommended to take advantage of maintenance opportunities, characterized by their low cost, arising after a positive inspection. However, when the cost of failure increases, a significant reduction in the time limit of postponement interval is observed. The examples reveal that both the time to defect arrival and delay time have a significant effect upon the cost-effectiveness of maintenance at the limit of postponement. Also, more simply, we find that opportunities must occur frequently enough and inspection should be a high quality procedure to risk postponement

    Imperfect inspection of a system with unrevealed failure and an unrevealed defective state

    Get PDF
    This paper proposes a model of inspection of a protection system in which the inspection outcome provides imperfect information of the state of the system. The system itself is required to operate on demand typically in emergency situations. The purpose of inspection is to determine the functional state of the system and consequently whether the system requires replacement. The system state is modeled using the delay time concept in which the failed state is preceded by a defective state. Imperfect inspection is quantified by a set of probabilities that relate the system state to the outcome of the inspection. The paper studies the effect of these probabilities on the efficacy of inspection. The analysis indicates that preventive replacement mitigates low quality inspection and that inspection is cost-effective provided the imperfect-inspection probabilities are not too large. Some derivative policies in which replacement is “postponed” following a positive inspection are also studied. An isolation valve in a utility network motivates the modeling

    Maintenance of systems with critical components. Prevention of early failures and wear-out

    Get PDF
    We present a model for inspection and maintenance of a system under two types of failures. Early failures (type I), affecting only a proportion p of systems, are due to a weak critical component detected by inspection. Type II failures are the result of the system ageing and preventive maintenance is used against them. The two novelties of this model are: (1) the use of a defective distribution to model strong components free of defects and thus immune to early failures. (2) the removal of the weak critical part once it is detected with no other type of rejuvenation of the system which constitutes an alternative to the minimal repair. We study the conditions under which this model outperforms, from a cost viewpoint, other two classical age-replacement models. The analysis reveals that inspection is advantageous if the system can function with the critical component in the defective state for a long enough time. The proportion of weak units and the quality of inspections also determine the optimum policy. The results about the range of application of the model are useful for decision making in actual maintenance. A case study concerning the timing belt of a four-stroke engine illustrates the model

    Special issue “Probability Theory and Stochastic modeling with applications”

    Get PDF
    This Special Issue (SI), titled “Probability Theory and Stochastic Modeling with Applications”, is concerned with the theory and applications of stochastic models [...

    Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair

    Get PDF
    We analyze the optimal replacement policy for a system subject to a general failure and repair model. Failures can be of one of two types: catastrophic or minor. The former leads to the replacement of the system, whereas minor failures are followed by repairs. The novelty of the proposed model is that, after repair, the system recovers the operational state but its condition is worse than that just prior to failure (worse than old). Undertrained operators or low quality spare parts explain this deficient maintenance. The corresponding failure process is based on the Generalized PĂłlya Process which presents both the minimal repair and the perfect repair as special cases. The system is replaced by a new one after the first catastrophic failure, and also undergoes two sorts of preventive maintenance based on age and after a predetermined number of minor failures whichever comes first. We derive the long-run average cost rate and study the optimal replacement policy. Some numerical examples illustrate the comparison between the as bad-as-old and the worse than old conditions

    Maintenance policy under multiple unrevealed failures

    Get PDF
    The unrevealed failures of a system are detected only by inspection. In this work, an inspection policy along with a maintenance procedure for multiunit systems with dependent times to failure is presented. The existence of an optimum policy is also discussed

    Maintenance policy under multiple unrevealed failures

    Get PDF
    The unrevealed failures of a system are detected only by inspection. In this work, an inspection policy along with a maintenance procedure for multiunit systems with dependent times to failure is presented. The existence of an optimum policy is also discussed
    • …
    corecore