11 research outputs found
Finite element analysis of trees in the wind based on terrestrial laser scanning data
Wind damage is an important driver of forest structure and dynamics, but it is poorly understood in natural broadleaf forests. This paper presents a new approach in the study of wind damage: combining terrestrial laser scanning (TLS) data and finite element analysis. Recent advances in tree reconstruction from TLS data allowed us to accurately represent the 3D geometry of a tree in a mechanical simulation, without the need for arduous manual mapping or simplifying assumptions about tree shape. We used this simulation to predict the mechanical strains produced on the trunks of 21 trees in Wytham Woods, UK, and validated it using strain data measured on these same trees. For a subset of five trees near the anemometer, the model predicted a five-minute time-series of strain with a mean cross-correlation coefficient of 0.71, when forced by the locally measured wind speed data. Additionally, the maximum strain associated with a 5âmsâ1 or 15âms-1 wind speed was well predicted by the model (Nâ=â17, R2â=â0.81 and R2â=â0.79, respectively). We also predicted the critical wind speed at which the trees will break from both the field data and models and find a good overall agreement (Nâ=â17, R2â=â0.40). Finally, the model predicted the correct trend in the fundamental frequencies of the trees (Nâ=â20, R2â=â0.38) although there was a systematic underprediction, possibly due to the simplified treatment of material properties in the model. The current approach relies on local wind data, so must be combined with wind flow modelling to be applicable at the landscape-scale or over complex terrain. This approach is applicable at the plot level and could also be applied to open-grown trees, such as in cities or parks
Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release
An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin wellhead and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically instrumented BAe-146 research aircraft were used to quantify the flow rate. The flow rate was calculated by assuming the plume may be modelled by a Gaussian distribution with two different solution methods: Gaussian fitting in the vertical and fitting with a fully mixed layer. When both solution methods were used they compared within 6% of each other, which was within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3±0.2kgCH4s-1, decreasing to less than half that by the second flight on 17 April 2012. ÎŽ13CCH4 in the gas was found to be -43â°, implying that the gas source was unlikely to be from the main high pressure, high temperature Elgin gas field at 5.5km depth, but more probably from the overlying Hod Formation at 4.2km depth. This was deemed to be smaller and more manageable than the high pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48h of sampling, with ÎŽ13CCH4 characterization soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision makers and assist rapid-response planning by government
Recommended from our members
Coordinated airborne studies in the tropics (CAST)
This is the final version of the article. It first appeared from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1Abstract
The main field activities of the Coordinated Airborne Studies in the Tropics (CAST) campaign took place in the west Pacific during JanuaryâFebruary 2014. The field campaign was based in Guam (13.5°N, 144.8°E), using the U.K. Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research aircraft, and was coordinated with the Airborne Tropical Tropopause Experiment (ATTREX) project with an unmanned Global Hawk and the Convective Transport of Active Species in the Tropics (CONTRAST) campaign with a Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical west Pacific, as well as the importance of trace-gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights in the region between 1°S and 14°N and 130° and 155°E. It was used to sample at altitudes below 8 km, with much of the time spent in the marine boundary layer. It measured a range of chemical species and sampled extensively within the region of main inflow into the strong west Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement Program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project, focusing on the design and operation of the west Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on board the Global Hawk in FebruaryâMarch 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individuals associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice
Co-ordinated Airborne Studies in the Tropics (CAST)
This is the author accepted manuscript. The final version is available from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the chemical composition of the atmosphere in the Tropical Warm Pool region to improve understanding of trace gas transport in convection.
The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West Pacific in January/February 2014. The field campaign was based in Guam (13.5°N, 144.8°E) using the UK FAAM BAe-146 atmospheric research aircraft and was coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical West Pacific as well as the importance of trace gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1°S-14°N and 130°-155°E. It was used to sample at altitudes below 8 km with much of the time spent in the marine boundary layer. It measured a range of chemical species, and sampled extensively within the region of main inflow into the strong West Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project focussing on the design and operation of the West Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on the Global Hawk in February/March 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individual associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice
Measurement of the 13 C isotopic signature of methane emissions from Northern European wetlands
Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially-resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3âm above the wetland surface and by aircraft sampling from 100âm above wetlands up to the stratosphere. Overall the methane flux to atmosphere has a coherent ÎŽ13C isotopic signature of -71â±â1â°, measured in situ on the ground in wetlands. This is in close agreement with ÎŽ13C isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast results from wetlands in Canadian boreal forest further south gave isotopic signatures of -67â±â1 â°. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variably methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60°N) global and regional modeling can use an isotopic signature of -71â° to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.UK Natural Environment Research Council (NERC). Grant Numbers: NE/I028874/1, NE/I014683/1, NE/F020937/1
European Community's Seventh Framework Programme. Grant Number: FP7/2007â2013
InGOS. Grant Number: 28427
Characterizing Instrumentation Canister Aerodynamics of FAAM BAe-146-301 Atmospheric Research Aircraft
A computational fluid dynamics (CFD) investigation was aimed at accurately predicting the air flow characteristics in the vicinity of underwing-mounted instruments on the Facility for Airborne Atmospheric Measurementâs (FAAM) BAe-146-301. Perturbation of the free stream airflow as it passes through the region of detection of the underwing instruments may lead to additional uncertainties in the measurement of clouds and cloud particles. The CFD model was validated with flight data from an Aircraft-Integrated Meteorological Measurement System (AIMMS-20) in a wing-mounted instrument canister. Flow predictions showed a consistent slowing from the true air speed of the aircraft in the longitudinal direction and the introduction of horizontal and vertical flows up to 10% of the air speed. The potential impact of these flow perturbations on sizing of particles with cloud imaging probes was modeled. Sizing errors were dependent on the methodology used and the shape of the particle; those due to transverse flows remained very small but mis-sizing due to unaccounted longitudinal flow perturbations were potentially more serious
Recommended from our members
Cloud banding and winds in intense European cyclones: Results from the DIAMET project
The Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.'s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s(-1) crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 h and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds