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Abstract 39 

The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign 40 

took place in the West Pacific in January/February 2014. The field campaign was based in Guam 41 

(13.5°N, 144.8°E) using the UK FAAM BAe-146 atmospheric research aircraft and was 42 

coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST 43 

campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed 44 

measurements of atmospheric structure and composition from the ocean surface to 20 km. These 45 

measurements are providing new information about the processes influencing halogen and ozone 46 

levels in the tropical West Pacific as well as the importance of trace gas transport in convection for 47 

the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1°S-48 

14°N and 130°-155°E. It was used to sample at altitudes below 8 km with much of the time spent in 49 

the marine boundary layer. It measured a range of chemical species, and sampled extensively within 50 

the region of main inflow into the strong West Pacific convection. The CAST team also made 51 

ground-based measurements of a number of species (including daily ozonesondes) at the 52 

Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1°S, 53 

147.4°E). This article presents an overview of the CAST project focussing on the design and 54 

operation of the West Pacific experiment. It additionally discusses some new developments in 55 

CAST, including flights of new instruments on the Global Hawk in February/March 2015. 56 

 57 

Capsule: The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the 58 

chemical composition of the atmosphere in the Tropical Warm Pool region to improve 59 

understanding of trace gas transport in convection.  60 

 61 

Introduction 62 

The Tropical Tropopause Layer (TTL) is the region of the tropical atmosphere between the main 63 

convective outflow at ~12-13 km and the base of the stratosphere at 17-18 km and is a very 64 

important region for composition-aerosol-climate interactions (Randel and Jensen, 2013). Its overall 65 

structure is intermediate between the troposphere and stratosphere, with a lapse rate smaller than the 66 

saturated adiabatic up to the cold point (Fueglistaler et al., 2009). This is caused by the combined 67 

effect of slow radiative processes and the infrequent penetration of convective turrets to high 68 
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altitude. There is a marked longitudinal asymmetry in TTL temperatures, with a minimum in the 69 

region 130-180°E at all times of the year. This minimum corresponds to the warm waters of the 70 

Tropical Warm Pool (TWP) beneath, and there is an associated maximum in convection (Gettelman 71 

et al., 2002). The TTL is the predominant route for troposphere to stratosphere transport, so that 72 

conditions in the TTL set the entry concentrations at the base of the stratosphere for, e.g., 73 

stratospheric water vapour and very short-lived halogen species. Knowledge of the input into the 74 

TTL is a pre-requisite for correct modelling of TTL (and hence stratospheric) composition and yet 75 

many aspects are poorly constrained (Levine et al., 2007; Heyes et al., 2009). The coupling between 76 

the various processes are important. For example, improving the treatment of TTL water vapour 77 

and cirrus in global climate models requires a better understanding of convective transport and 78 

radiative transfer in the TTL, as well as improved model descriptions of the key processes. 79 

We are still unclear about the entry and exit routes for the TTL, including how much material is 80 

transported quasi-horizontally into the extratropical lowermost stratosphere (Levine et al, 2008). 81 

What is the average residence time in the TTL? What is the nature, and importance for composition, 82 

of longitudinal variability within the TTL? How much of the very short-lived halogen species can 83 

pass through the TTL and so affect stratospheric ozone concentrations? Large discrepancies exist 84 

between models and measurements even for long-lived tracers. Some of these are due to transport – 85 

sharp horizontal gradients are observed in atmospheric tracers at boundaries between mid-latitude, 86 

subtropical and tropical airmasses which are not well represented by models (Wofsy et al., 2011) – 87 

and some to limited information on emissions, e.g. N2O and CH4 in this region (Ishijima et al., 88 

2010). These issues are more important for very short-lived substances (VSLS - lifetimes < 6 89 

months), including halogen-containing VSLS with their poorly understood sources, atmospheric 90 

transformations and geographic distribution (Carpenter, Reimann et al., 2014). Other effects such as 91 

the degree to which the locations of the emissions coincide with strong convection can also have a 92 

strong influence on the overall flux (Russo et al., 2015). 93 

To address these issues, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 94 

atmospheric research aircraft was deployed in Guam in January and February 2014 as part of Co-95 

ordinated Airborne Studies in the Tropics (CAST), a large multi-institutional project funded by 96 

the UK Natural Environment Research Council (NERC) and Science and Technology Facilities 97 

Council (STFC). In Guam, it flew alongside the NASA Global Hawk, a high altitude autonomous 98 

aircraft used in the NASA Airborne Tropical Tropopause Experiment (ATTREX) project, and the 99 

NSF/NCAR Gulfstream V (GV) in the NSF Convective Transport of Active Species in the Tropics 100 

(CONTRAST) project, as described in the companion papers, Jensen et al. (2016) and Pan et al. 101 
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(2016). The measurements from all three campaigns are being jointly used to diagnose how air is 102 

carried high into the atmosphere.  103 

The value inherent in having the three aircraft flying together was to be able to measure from the 104 

surface up into the stratosphere (see Figure 1 in Pan et al., 2016). The instrument payloads on the 105 

three aircraft made many common measurements which together have combined to provide a 106 

comprehensive data set for interpretative studies. However within this larger picture, each aircraft 107 

had its own scientific aims and objectives which were appropriate to the specific aircraft 108 

capabilities. The Global Hawk made measurements in upper tropical TTL (14-20 km), including in 109 

the outflow of convection. The GV aircraft principally sampled at the same altitudes as the main 110 

convective outflow (9-15 km), and additionally made measurements on profiles down into the 111 

boundary layer. In the case of the FAAM aircraft, the aims were to (i) investigate halocarbon 112 

production in the marine boundary layer, and (ii) characterise the composition of air in the main 113 

convective inflow. Knowledge of the distributions of trace gases in the boundary layer and lower 114 

troposphere is needed to estimate the flux of these gases into the TTL. The role of the FAAM 115 

research aircraft was to fly over the tropical West Pacific and to measure the composition in the low 116 

troposphere (0-8 km). These measurements characterise the air masses in the region of the main 117 

convective inflow and so are valuable in interpreting the higher altitude measurements of the Global 118 

Hawk and the GV made in the same period. They can also be used to improve understanding of 119 

marine halocarbon production and to investigate the influence of polluted outflow from Asia. 120 

Additional measurements were made on Manus, Papua New Guinea. 121 

The majority of this paper describes the CAST measurements in January/February 2014, and the 122 

flight planning tools used for the FAAM aircraft and for linking its measurements with those made 123 

by the other aircraft. Some early results are also discussed. The second CAST goal is to develop the 124 

UK capability to use autonomous aircraft for atmospheric research. Here, in addition to learning 125 

about deploying the Global Hawk and using the data collected, CAST scientists have produced two 126 

new instruments for use on the Global Hawk which flew over the East Pacific in February/March 127 

2015. These are described in the final section. 128 

 129 

CAST measurements 130 

Measurements were made on two main platforms in the West Pacific. The FAAM BAe-146 131 

research aircraft was based at the A.B. Won Pat International Airport, Guam (13.5°N, 144.8°E). 132 

The FAAM aircraft was co-located with the NCAR Gulfstream while the NASA Global Hawk was 133 

based at Andersen Air Force Base approximately 30km to the north east. A suite of ground-based 134 

instrument systems was based at the Atmospheric Radiation Measurement (ARM) facility at 135 
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Manus, Papua New Guinea (2.1°S, 147.4°E), in order to characterise the tropospheric composition 136 

beyond the range of the FAAM aircraft. 137 

 138 

Flight planning 139 

The goal of the CAST FAAM flights was to characterise the inflow to convection in the lower 140 

troposphere in the West Pacific. In order to extend the range of the aircraft so that it could reach 141 

into the upwelling area near the equator, overnight stops were planned at the islands of Palau 142 

(Roman Tmetuchl International Airport, Babeldaob island, Republic of Palau; 7.4°N 134.5°E) and 143 

Chuuk (Chuuk International Airport, Weno Island, Federated States of Micronesia; 7.5°N, 144 

151.8°E). When conditions allowed, transects were made at 100 feet (with occasional dips down to 145 

50 feet) over the open ocean to give the opportunity to sample air influenced by fresh ocean 146 

emissions. Stacked runs with horizontal legs at different altitudes were planned where possible to 147 

provide information about the vertical profile of the short-lived species in the lower troposphere. A 148 

large part of the flight planning for the FAAM research aircraft was to ensure a good coverage of 149 

the lower troposphere within range from Guam. 150 

Chemical forecast products were provided by the Monitoring Atmospheric Composition & Climate 151 

(MACC) project in support of all three field campaigns. MACC assimilates comprehensive global 152 

observations of chemical composition into the ECMWF meteorological forecasting system 153 

(Flemming et al., 2015). The operational MACC system runs at 80 km horizontal resolution (T255) 154 

with 60 vertical levels. During the campaign, forecast plots for the operation domain were provided 155 

for a number of chemical species, including the FAAM measurements: O3, CO, CH4, black carbon, 156 

NO, and NO2. In addition, a number of hypothetical tracers were included to track air originating 157 

from different locations, e.g. regional emissions from China and India. A coastal emission tracer 158 

was used to track oceanic emissions of CHBr3 and other short-lived halocarbons since these are 159 

preferentially released in coastal regions (Carpenter et al., 2009; Ashfold et al., 2014).  160 

 161 

Linking measurements 162 

In order to have near-real-time information about the air reaching the TTL from the lower 163 

troposphere, the trajectory-based approach of Ashfold et al (2012) was adapted to meet the needs of 164 

a multi-aircraft campaign. In this, the Numerical Atmospheric-dispersion Modelling Environment 165 

(NAME) was run as an adjunct to the Met Office operational forecasting model so that it could 166 

access meteorological forecasts on a timescale quick enough to provide useful flight planning 167 

information. The starting grid for the trajectories covered a large area of the West Pacific (Figure 168 

7), with trajectories being released at altitudes between 8 and 18 km. Twelve day backward 169 
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trajectories were then calculated using a mixture of Met Office analyses and forecasts, so that 170 

information was available about the possible influence of lower tropospheric air in the regions 171 

which could be sampled by the Global Hawk and the GV. Each day, trajectories were produced for 172 

1, 2, 3 and 5 days in the future. In each 2 km altitude layer, 5,000 particles were released in each 10º 173 

x 10º box. During the campaign, these calculations were made for a larger area at higher altitudes to 174 

reflect the larger range of the Global Hawk. The horizontal resolution of the Met Office operational 175 

model was 25 km in early 2014. 176 

An example is shown in Figure 1 for three altitude ranges (12-14 km, 14-16 km, and 16-18 km). 177 

Each point is the end-point of each parcel of air that had crossed below 1 km in the preceding 12 178 

days. For graphical clarity, only a fraction of the trajectories are shown at each level. Thus strong, 179 

predicted low level influence is indicated by a high percentage in each box (shown by the number), 180 

and at a given level by the denser clouds. These maps were routinely checked against flight plans 181 

for the Global Hawk and the GV to ensure that a wide range of low level influence was sampled. In 182 

general, most flight plans met this criteria due to the proximity of the aircraft to the main convective 183 

region.  184 

 185 

FAAM BAe-146 aircraft 186 

The FAAM BAe-146 has a science payload of up to 4 tonnes devised according to the objectives of 187 

a particular campaign. The chemical composition of the tropical atmosphere is the focus of CAST 188 

and this dictated the scientific payload. The chemical species and physical parameters measured on 189 

the FAAM aircraft, along with the instruments used, are summarised in Table 1. Trace gases with a 190 

wide range of atmospheric lifetimes, sources and sinks were measured in order to provide 191 

information about the origin and fate of the air masses encountered as well as about the atmospheric 192 

timescales involved. In many cases these species were also measured by the Global Hawk and/or 193 

the GV aircraft giving good synergy between the three datasets. Understanding the distribution and 194 

chemistry of halogen species is a special focus for all three campaigns and this is reflected in the 195 

FAAM payload. 196 

Whole air samples (WAS) were collected as described in Andrews et al. (2013). Analysis of WAS 197 

canisters was carried out in the aircraft hangar, usually within 72 hours of collection. Two litres of 198 

sample air were pre-concentrated using a thermal desorption unit (Markes Unity2 CIA-T) and 199 

analysed with gas chromatography, mass spectrometry (GC-MS, Agilent 7890 GC, 5977 Xtr MSD). 200 

Halocarbons were quantified using a NOAA calibration gas standard. Dimethylsulfide was 201 

quantified using a secondary standard prepared and referenced to a primary KRISS standard. The 202 

full method is detailed in Andrews et al. (2013, 2016).  203 
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Measurements of a subset of halocarbons and other volatile organic compounds (VOCs) were made 204 

in-flight using a new thermal desorption (TD) GC-MS system. 1 L of sample air, drawn from a 205 

window blank inlet, pressurised to 2.5 atm and dried using a multi-core counter-current Nafion drier 206 

was alternately pre-concentrated or analysed from two parallel adsorption traps (Tenax TA) of 207 

a two channel TD system (Markes International, model TT 24/7). Analytes were refocussed at the 208 

head of the column using liquid CO2 prior to separation (10 m, 180 micron I.D., 1 micron film, 209 

Restek RTX502.2 column; 40 to 150 °C at 40 °C min-1) by GC (Agilent 6850) and detection by 210 

electron impact MS single ion monitoring (Agilent 5975C), calibrated pre-flight against the WAS 211 

gas standard (NOAA, SX-3581). Instrument temporal resolution, and associated sample integration 212 

period, was 5 min. 213 

The chemical ionisation mass spectrometer (CIMS) from the Georgia Institute of Technology was 214 

configured similarly to previous deployments (Le Breton et al., 2012; 2013). The I- ionization 215 

scheme was used to detect inorganic halogens, carboxylic acids, HCN and other trace species. For 216 

CAST, the CIMS made simultaneous measurements of BrO, BrCl, Br2 and HOBr. The 1 Hz data 217 

were averaged to 30 s for analysis. Pre-campaign and post-flight laboratory calibrations were used 218 

relative to in-flight formic acid calibrations to quantify the sensitivities and limits of detection for 219 

the inorganic halogens, similar to that used for dinitrogen pentoxide (Le Breton et al., 2014). The 220 

sensitivities ranged from 1 to 50 ion counts ppt-1 s-1 determined by in-flight and post-campaign 221 

calibrations. The limits of detection for species varied from 0.36 ppt to 37 ppt for 30 s averaged 222 

data. (All mixing ratios given in this paper are by volume.) An acid scrubber was used to quantify 223 

background signal in the instrument and inlet line. 224 

A broadband cavity-enhanced absorption spectrometer (BBCEAS) was adapted to measure IO in 225 

the 410-482 nm wavelength region. No clear absorption feature was observable from spectra by eye 226 

with up to 100 s averaging, pointing to very low mixing ratios (<~0.5 ppt) of IO over the sampled 227 

area. When using averaged data, a small positive bias (~0.3 ppt) of IO was observed with respect to 228 

the zero. These observations appear to support the existence of IO in the remote marine boundary 229 

layer at sub-ppt levels, but the limited sensitivity precludes robust identification of spatial gradients.  230 

NO was measured using chemiluminescence. NO2 was quantified using a second channel, with NO2 231 

being converted to NO using a blue light LED converter centred at 395 nm. The NO2 mixing ratio is 232 

derived from the difference between total NOx and NO mixing ratios. The instrument is calibrated 233 

via addition of 5 sccm of known NO concentration to the ambient sample. The conversion 234 

efficiency of the LED converter is measured in each calibration using gas phase titration of the NO 235 

to NO2 on addition of O3. In flight calibrations were conducted above the boundary layer to ensure 236 



 8 

stable low levels of NOx with before and after flight calibrations made using an overflow at the inlet 237 

of zero grade air. A more detailed description of a similar system can be found in Lee et al. (2009). 238 

O3 was measured by a UV absorption photometer (Thermo Fisher, model 49C), traceable to the UK 239 

National Physical Laboratory primary ozone standard with an uncertainty of 2%, and a precision of 240 

1 ppb for 4 s measurements. 241 

CO was measured by a vacuum UV fluorescence analyser (Aero Laser GmbH, model AL5002, 242 

Gerbig et al., 1999).  The instrument was calibrated in-flight every ~45 minutes using a synthetic air 243 

working standard (Air Liquide, ~500 ppb), traceable to the NOAA-Earth System Research 244 

Laboratory (GMD-CCGG) surveillance standard and the World Meteorological Organisation CO 245 

scale X2004.  1 Hz CO measurements have a 2% uncertainty and 3 ppb precision. 246 

CO2 and CH4 were measured by a cavity-enhanced IR absorption spectrometer (Los Gatos Research 247 

Inc. Fast Greenhouse Gas Analyser, model RMT-200).  The instrument was customised for airborne 248 

operation (O’Shea et al, 2013), so CO2 and CH4 dry mole fractions can be linearised in-flight using 249 

natural air working standards, traceable to the World Meteorological Organisation CO2 scale X2007 250 

and CH4 scale X2004. The performance of the system is estimated from the 1σ standard deviation 251 

of all in-flight ‘target’ calibration data. The 1 Hz measurement precisions are estimated at 0.7 ppm 252 

and 2.5 ppb for CO2 and CH4. Through the addition of all known uncertainties we estimate a total 253 

accuracy of ±1.3 ppb for CH4 and ±0.2 ppm for CO2. 254 

The Passive Cavity Aerosol Spectrometer Probe 100-X (PCASP), upgraded with the SPP-200 255 

electronics package from Droplet Measurement Technologies (DMT), measures aerosol particles 256 

with nominal diameters 0.1 to 3 µm. Light from a 0.6328 µm laser is scattered by the particles and a 257 

photodetector sums the forward (over solid angles subtended by 35°-120°) and backward (60°-258 

145°) scattered light. The probe is canister-mounted under the wing and was operated at 1 Hz. The 259 

instrument was calibrated for particle size before and after the campaign. Uncertainties exist in both 260 

the sizing and counting of particles and these are discussed, along with the calibration procedure, in 261 

Rosenberg et al. [2012].  262 

The DMT Cloud Droplet Probe (CDP; Lance et al., 2010) was flown on the same under-wing pylon 263 

as the PCASP. The CDP is an open path instrument that measures the forward scattered light (over 264 

solid angles nominally subtended by 1.7°-14°) from the 0.658 µm incident laser beam. Particles are 265 

assigned to one of thirty size bins over the nominal size range 3-50 µm. Calibration with certified 266 

diameter glass beads was carried out before each flight (Rosenberg et al., 2012). The sample rate of 267 

the CDP was the same as for the PCASP, 1 Hz. 268 

 269 
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Manus 270 

Observations started at the ARM Climate facility on Manus Island in October 1996 (Mather et al, 271 

1998) and continued until August 2014. These observations provided the basis for many studies of 272 

the climate in the West Pacific (e.g., Long et al., 2013 and references therein). In February 2014, a 273 

suite of ground-based instruments was deployed as part of CAST to make measurements of ozone 274 

(ground and profile), short-lived halocarbons, carbon dioxide, carbon monoxide and methane. The 275 

instruments used are now described and are summarised in Table 2. 276 

Ozone profiles were measured using ozonesondes. Air is pumped through a KI solution in a cathode 277 

half-cell, with two electrons produced for each ozone molecule; the cell current is directly 278 

proportional to the flow of ozone through the cell. Ozonesondes have a typical response time of ~ 1 279 

minute at the tropopause level, with a precision of a few ppb. In the TTL the accuracy of the 280 

measurement is dominated by the background current (Newton et al., 2016 and references therein). 281 

Simultaneously, vertical profiles of temperature, humidity, wind and pressure were measured with 282 

Vaisala RS92 radiosondes. 283 

Ground-level ozone was measured by a Thermo-Electric Corporation TE49C which is a dual-284 

channel ultraviolet photometer measuring ozone through absorption of radiation at 254 nm. The 285 

incoming air stream is split between two identical cells, with a scrubber removing ozone from one 286 

of the streams. The TE49C provides a measurement every 10 s and has a 20 s response time.  287 

Ground-level trace gas concentrations were measured by a Picarro Cavity Ring-Down Spectrometer 288 

G2401 (CRDS) (Crosson, 2008). The sample air inlet was at ~8 m above ground level with a rain 289 

cover and a 2 µm particulate filter. Water vapour in the instrument was kept below 1.5 ppm and was 290 

controlled by passing the sample flow (~250 mL min-1) through a chiller at ~5 °C and then through 291 

a dessicant-based nafion drier. CO2 and CH4 concentrations were recorded every 5 s, with 292 

precisions of ~1 ppb and ~200 ppb respectively. Calibrations were achieved using a target gas 293 

(CH4, 2024 ppb; CO2, 390 ppm) measured every 2 days for 10 minutes with low / high calibration 294 

runs on intermediate days (low/high: CH4, 1919/2736 ppb; CO2, 360/495 ppm). The calibration 295 

gases are linked to the NOAA/WMO calibration scale.  296 

Surface concentrations of short-lived halocarbons were measured using a µDirac instrument, a gas 297 

chromatograph with electron capture detector (GC-ECD) based on that described in Gostlow et al 298 

(2010) but with a 10 m separation column.  The instrument sampled ambient air from the ~ 8 m 299 

high mast, with a 10-20 ml min-1 flow dried using a counter flow nafion drier. Calibration runs, 300 

using a NOAA-ESRL air cylinder spiked with the target compounds, were conducted regularly 301 

(every 3 samples). The calibration volumes ranged from 3 to 50 ml to allow correction for drifts in 302 
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instrument sensitivity and linearity. Measurement precision is species dependent, typically 2-10 % 303 

(±1sd), with accuracy in the range 5-10 % (±1sd). 304 

 305 

Overview of measurements 306 

The FAAM BAe-146 made a total of 25 science flights with 90 flight hours during the CAST 307 

deployment in the West Pacific (Figure 2). Brief summaries of the flights are given in Table 3. The 308 

flight tracks are shown in Figure 2, with the altitude represented by the colour of the line. The large 309 

majority of the flights were below 5 km altitude, with a significant fraction in the marine boundary 310 

layer (below ~1 km), with good coverage between 130°E-160°E and 2°S-14°N.  311 

The vertical distribution of the science flights can also be seen in Figure 3 which shows O3 and CO 312 

concentrations as a function of altitude and latitude. In general lower O3 values are found in the 313 

marine boundary layer and at lower latitudes, while high values are found at higher altitudes and at 314 

higher latitudes. There is no obvious correlation with CO. However when the O3 and CO data are 315 

plotted against each other (Figure 4), a bimodal relationship emerges. Further, the lower ozone 316 

values (10-40 ppb) occur when the relative humidity is high (Figure 4, top panel). This finding 317 

reinforces that of Pan et al. (2015) who report this bimodality throughout the altitude range covered 318 

by the NCAR GV, with a background mode of nearly constant (~20 ppb) values throughout the 319 

troposphere and a secondary mode of higher ozone (~35-95 ppb) in layers with lower relative 320 

humidity. The previously reported S-shaped mean profile (Folkins et al., 2002) results from 321 

averaging the two modes.  322 

The CAST measurements (Figure 4) show that high ozone and lower relative humidity often occurs 323 

with higher NO concentrations and do not occur with low CO concentrations. Preliminary analysis 324 

of the high NO measurements indicates that the air masses encountered had previously been in 325 

regions close to anthropogenic activities and/or biomass burning. For example, the MACC forecasts 326 

show transport of biomass burning and SE Asian tracers to the West Pacific. The possible role of 327 

biomass burning has been thoroughly investigated by Anderson et al. (2016) using CAST and 328 

CONTRAST measurements. The presence of HCN, CH3CN and other tracers in the high ozone 329 

levels is explained by biomass burning plumes which are convectively lofted into the free 330 

troposphere undergoing dehydration during the convection. As this air descends, its relative 331 

humidity drops and ozone is produced photochemically.  332 

The CHBr3 concentrations measured with the Whole Air Sampler and the on-board GC-MS are 333 

shown in Figure 5. In general the values are low with even the higher values not far above the 334 

background values seen in this region (Brinckmann et al., 2012). The lower amounts of CHBr3 were 335 

encountered out of the boundary layer (Figure 4b). The background in Figure 2 shows that the 336 
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Chlorophyll-a concentrations in the surface waters of the West Pacific were low in this period. 337 

Higher Chl-a values are seen in the shallower waters approaching the islands of the Maritime 338 

Continent. The lagoon inside Chuuk atoll is relatively shallow (<60 m) and is embedded in much 339 

deeper ocean waters. It has a circumference of ~200 km and an area of ~3000 km2. If halocarbons 340 

are emitted preferentially in shallow waters (Carpenter et al., 2009), then it should be discernible as 341 

an emission hotspot. The influence of short-lived halocarbon emissions from shallower waters was 342 

investigated in the FAAM flights by circling Chuuk atoll at low altitudes. The inset of Figure 5a 343 

shows the CHBr3 observed on these flights as well as the instantaneous wind speed observed by the 344 

FAAM aircraft. Higher concentrations of CHBr3 (red) are found when air has previously passed 345 

over the atoll, indicating that the atoll is a source of CHBr3.   346 

The NAME model driven by Met Office analysed fields has been used to interpret the CHBr3 and 347 

other brominated VSLS measurements made near the tropopause on the Global Hawk in the East 348 

Pacific in 2013 and the West Pacific in 2014 (Navarro et al., 2015). The approach is similar to the 349 

forecast information produced during the campaign (see above).  They find that the majority of air 350 

recently injected into the TTL had come from the West Pacific in both years with similar amounts, 351 

~6 (4-9) ppt, of combined organic and inorganic bromine derived from brominated VSLS. 352 

CHBr3 was also observed at the ARM facility in Manus (Figure 5). The median value in this period 353 

was 0.81 ppt, about half that previously observed at a coastal site in Malaysian Borneo (Robinson et 354 

al., 2014) and similar to the values observed on the FAAM aircraft (Figure 4). A strong diurnal 355 

cycle is seen in early February in several trace gases measured at Manus with increased nocturnal 356 

amounts providing evidence for local night-time sources of CO2, CH4, CHBr3 and CH3I. This 357 

diurnal behaviour was seen from February 3rd to 12th when the winds were low and a stable 358 

boundary layer was able to form. Before and after this period winds were higher and the night-time 359 

build-up was much less. 360 

Together, the CHBr3 observations appear consistent with past work focussed on Southeast Asia. 361 

Elevated levels are frequently observed close to coasts (e.g. Pyle et al., 2011) or above shallow 362 

waters, but measurements collected a relatively small distance away (less than a typical global 363 

model grid cell) rarely contain above background levels of CHBr3. This suggests that coasts are not 364 

a large source in a regional/global sense (as found by Ashfold et al., 2014), and for coastal CHBr3 365 

emissions to contribute significantly to the TTL and stratosphere would require co-location of 366 

convection (Russo et al., 2015). 367 

Ground-based ozone at Manus showed decreases at night in the quiescent period from a peak 368 

daytime value of 10 ppb to sub 5 ppb levels which are consistent with oxidative uptake to the local 369 

vegetation (Figure 6). This is the only time such low values of ozone were seen in CAST. In the 370 



 12 

absence of local sources, C2Cl4 is a good tracer of large scale transport, and its concentrations in 371 

this period were generally in the range 1-1.5 ppt which are typical of those seen in the clean West 372 

Pacific (Ashfold et al., 2015). Manus was mainly influenced by flow from the north in this period. 373 

A total of 39 ozonesondes were launched from Manus in February 2014, with 34 sondes providing 374 

good ozone profiles (Figure 7(a); Newton et al., 2016). These measurements are hardest in the 375 

tropics as the ozone concentrations are low, so that any error in estimating the background current is 376 

important. Particular attention was therefore paid to measurements of the background current, 377 

leading to recommendations for changes to the standard operation procedures used in the sonde 378 

preparation. Support for this approach is provided by good agreement in a coordinated ozonesonde / 379 

GV flight (see Figure 14 in Pan et al., 2016). The ozone measurements are shown in Figure 7 380 

alongside the corresponding MACC 1 and 4 day forecasts. The forecasts predicted the main 381 

characteristics of the observations such as increased ozone at about 400 hPa from 14-16 Feb and the 382 

low concentrations near the TTL from 19-23 Feb. The minimum reproducible ozone concentration 383 

measured in the TTL was 12 ppb, consistent with the minimum of 13 ppb measured by the GV 384 

during CONTRAST (Pan et al., 2016). 385 

 386 

New technology developments 387 

As part of the collaboration with ATTREX, three new developments were included in CAST: two 388 

instruments for use on the Global Hawk, the Aerosol-Ice-Interface Transition Spectrometer (AIITS) 389 

and the GreenHouse gas Observations in the Stratosphere and Troposphere (GHOST); and a 390 

software tool, Real-time Atmospheric Science Cluster AnaLysis (RASCAL), designed to assist 391 

aircraft scientists by performing real-time data analysis during flights. The two new instruments 392 

were flown for a total of 40 hours in one test flight and two science flights in February-March 2015 393 

from the NASA Armstrong Flight Research Center, California. They were part of a payload which 394 

also included Hawkeye, the NOAA H2O and O3 instruments, the Global Hawk Whole Air Sampler 395 

(GWAS), and Microwave Temperature Profiler (MTP) (see Jensen et al, 2016 for more details). 396 

The Aerosol-Ice-Interface Transition Spectrometer (AIITS) was designed to probe different cirrus 397 

regimes in the TTL in order to understand fundamental nucleation and sublimation processes 398 

influencing the stratospheric water budget and fluxes, as well as the potential impact of biomass 399 

burning on cirrus ice crystal activation and growth. It is the next instrument in the Small Ice 400 

Detector (SID) family (Hirst et al., 2001; Kaye et al., 2008). AIITS acquires 2-D forward scattering 401 

patterns from particles in the size range from about one to a few hundred micrometres and can 402 

measure the depolarisation in backward and forward scattering. The patterns allow quantification of 403 

the phase, habit and fine surface features of large aerosol and small ice crystals in the size range 2-404 
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100 µm (Cotton et al., 2010; Ulanowski et al., 2014). Unique results were obtained by AIITS during 405 

cirrus penetrations at 16.5 km and at temperatures down to -80°C (Figure 8). These revealed a 406 

transition to smooth quasi-spherical ice particle regimes in specific regions of TTL layers in 407 

response to changing supersaturation regimes. The impact on the radiative scattering properties of 408 

cirrus in these regimes is being investigated. 409 

GHOST is a novel grating spectrometer designed for remote sensing of greenhouse gases from 410 

aircraft (Humpage et al., 2014). It measures spectrally-resolved shortwave-infrared radiance across 411 

four spectral bands from 1.27 µm to 2.3 µm, with a spectral resolution between 0.1 and 0.3 nm. An 412 

optical gimbal underneath the aircraft is programmed to pass solar radiation reflected from the 413 

ocean surface through a fibre optic bundle into the spectrometer with a single grating and detector 414 

for all 4 bands. The bands are chosen to include absorption bands for CO2 and CH4 as well as CO, 415 

H2O and O2. O2 is used to infer information on the scattering contributions towards the measured 416 

light.  The third Global Hawk flight of the CAST/ATTREX campaign targeted the overpasses of 417 

two greenhouse gas observing satellites during clear sky conditions over the Eastern Pacific (Figure 418 

9); the NASA Orbiting Carbon Observatory (OCO-2) and the JAXA Greenhouse gas Observing 419 

SATellite (GOSAT). This Global Hawk flight therefore provides a very useful validation dataset for 420 

these satellites, since they both make greenhouse gas measurements using a similar spectral range to 421 

GHOST. 422 

As real-time data becomes increasingly available, mission scientists are faced with a potentially 423 

overwhelming data torrent from which they are required to find the information on which to base 424 

decisions. At present, mission scientists often focus on a subset of the data stream, limiting the 425 

depth of the analysis which can be carried out. As part of CAST, a new software framework, 426 

RASCAL, has been developed based on recent developments in arbitrarily-shaped cluster detection 427 

algorithms (Hyde and Angelov, 2015). It interfaces intuitively with mission scientist expert 428 

knowledge and provides real-time on-the-fly cluster and anomaly detection (i.e. for real-time 429 

diagnosis of structures such as those diagnosed in Figure 4, for example, but tested simultaneously 430 

across many chemical 'dimensions'). The data stream can be separated in real-time, without a priori 431 

assumptions about parameter relationships, to reveal different data groups and hence isolate specific 432 

regions of interest that can be revisited virtually post-flight. In combination with the expert 433 

knowledge of the mission scientists, support tools like RASCAL have the potential to be used on 434 

many research aircraft, potentially adding significant value to the results achieved in field 435 

measurement campaigns. 436 

 437 

Summary 438 
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Based in Guam as part of a joint deployment with the NASA ATTREX Global Hawk and the NSF 439 

CONTRAST GV, the FAAM research aircraft deployment in CAST has provided an excellent 440 

characterisation of the lower tropospheric atmospheric composition in the Tropical Warm Pool 441 

region. The majority of the FAAM aircraft flights were below 5 km altitude, and a significant 442 

fraction was in the marine boundary layer with good coverage in 130°E-160°E and 2°S-14°N. A 443 

suite of organic and inorganic halogen compounds was measured, with the bromine-containing 444 

species particularly well covered.   445 

Ground-based measurements were made at the ARM facility on Manus Island, Papua New Guinea 446 

during February 2014. These measurements characterise the tropospheric composition just south of 447 

the equator in a region inaccessible to the FAAM aircraft in this deployment. The Manus 448 

ozonesonde measurements are a valuable resource, providing a good picture of the vertical 449 

distribution of ozone in the Tropical Warm Pool region during February with a minimum ozone 450 

concentration in the TTL of 12 ppb. 451 

These measurements are being interpreted by CAST scientists in conjunction with measurements 452 

from ATTREX and CONTRAST using a range of modelling and data analysis approaches. The 453 

CAST data are stored at the British Atmospheric Data Centre (http://badc.nerc.ac.uk/), and 454 

interested parties are encouraged to use them for their own studies. All users are strongly 455 

encouraged to involve the responsible instrument scientists in these studies in order to have insight 456 

into the strengths and weaknesses of these data. 457 

Never before has the atmosphere over the West Pacific been observed in such detail, particularly 458 

the chemical composition, with three aircraft covering all altitudes from 0 to 20 km. New insights 459 

are starting to emerge with much improved understanding of the tropical ozone distribution (Pan et 460 

al., 2015; Anderson et al., 2016; Newton et al., 2016). These will be underpinned by advances in the 461 

understanding of halogen distribution (Navarro et al., 2015) and chemistry building on the new 462 

tropospheric halogen measurements (Le Breton et al., 2016) and modelling (Sherwen et al., 2016). 463 

Such research will lead to a much greater quantitative understanding of the role of (a) VSLS 464 

reaching the stratosphere and (b) how halogen chemistry affects tropospheric ozone over the 465 

tropical oceans. Similar advances can be expected with respect to transport and dynamics, the role 466 

of cirrus cloud in climate and dehydration of the stratosphere. The benefits of this unique, 467 

coordinated campaign are just starting to become clear. 468 
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Table 1: Instruments and measurements made on the BAe 146 (FAAM) aircraft during the CAST project. The table also indicates the synergy with 658 
other aircraft from the CONTRAST (Gulfstream-V (GV)) and ATTREX (Global Hawk (GH) projects.  659 
Species / parameter Method / instrument details Averaging time Precision, accuracy Synergy with 

other aircraft 

Affiliation, reference 

Position, winds, u, v, w INS, GPS, 5-port turbulence 

probe 

0.1 s 0.01 P/PS GV, GH FAAM 

Peterson and Renfrew (2009) 

Humidity (Dew point T) Hygrometer, General Eastern 

1011b 

0.25 s ± 0.5 - ± 3 K dependent 

on dew point and ambient 

conditions 

GV, GH FAAM 

Ström et al. (1994) 

Temperature Rosemount Aerospace Ltd. 

sensor 102 AL 

.05 s ± 0.3K GV, GH FAAM 

Lenschow (1986) 

CO 

 

VUV resonance / fluorescence, 

Aerolaser 5002 

1 s 1 ppb, 3% GV, GH FAAM 

Gerbig et al. (1999) 

O3 

 

UV absorption, TEI 49C 4 s 1 ppb, ±5% GV, GH FAAM 

Wilson and Birks (2006) 

CO2, CH4 

 

Cavity enhanced absorption 

spectrometer, Los Gatos 

Research Inc 

1 s CH4: 2.5 ppb; 1.3 ppm 

CO2: 0.7 ppm; 0.2 ppm 

GV, GH FAAM / U. Manchester 

O’Shea et al. (2013) 

NO, NO2 

 

Chemiluminescence with 

photolytic conversion for NO2, 

Air Quality Design Inc.   

10 s 5 pptv for NO and 15 

pptv for NO2 (at 10 s 

averaging) 

GV FAAM / U. York 

Lee et al. (2009) 

Halocarbons (Whole air samples 

(WAS)): (DMS, CHBr3, CH2Br2, 

CHBr2Cl, CH3I, CH2BrCl, CHBrCl2, 

CH2ICl, CH2IBr, CH2I2, CH2Cl2, 

CHCl3) 

TD-GC-MS, Markes  30 s fill time for WAS Species dependent, 

typically 0.1 – 1 pptv. 

GV, GH U. York 

Andrews et al. (2013; 2016) 

NMHCs (Whole air samples (WAS)): 

(C1-C7 NMHCs (alkanes, alkenes, 

aromatics); small o-VOCs  (acetone, 

methanol, acetaldehyde, ethanol); DMS 

GC-FID (flame ionization 

detector), Perkin Elmer 

30 s fill time for WAS Species dependent, 

typically 5 pptv 

GV, GH U. York 

Hopkins et al. (2003) 

Halocarbons, VOCs (in situ) GC-MS (Gas Chromatography – 

Mass Spectrometry), Agilent  

300 s 

 

Species dependent, 

typically 1 – 5 pptv. 

GV U. York 

 

BrO, Br2, HOBr, BrCl, HCOOH 

(formic acid), HCN, ClNO2, HNO3, 

N2O5, CH3COOH (acetic acid), 

CH3CH2COOH (propanoic acid), 

CH3CH2CH2COOH (butanoic acid) 

Chemical Ionisation Mass 

Spectrometer (CIMS) 

 

30 s Species dependent, 

typically 0.3 – 5 ppt 

GV U. Manchester 

Le Breton et al. (2012) 

 

IO Broadband Cavity Enhanced 

Absorption Spectrometer 

(BBCEAS) 

see text see text GV (IO 

remote 

sensing) 

U. Cambridge 

Kennedy et al. (2011) 

PAN Dual column GC-ECD 90 s 3%, 10% GV U. York 

Whalley et al. (2004) 

Black carbon Soot particle photometer (SP-2) 10 s  None U. Manchester, 

Liu et al. (2015) 
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Aerosol PCASP (Passive Cavity 

Aerosol Spectrometer Probe) 

1s  See text GV, GH FAAM 

Rosenberg et al. (2012) 

Cloud physics CDP (Cloud Droplet Probe) 1s See text GV, GH FAAM 

Rosenberg et al. (2012) 

 660 
 661 
 662 
Table 2: Measurements made at the ARM site at Manus, Papua New Guinea during CAST 663 
Species / parameter Method / instrument details Operation Precision, accuracy Affiliation, reference 

O3 (profile) 

 

Ozonesonde, ENSCI model Z 

from DMT 

Daily see Newton et al. (2016) U. Manchester, NCAS 

Newton et al. (2016) 

O3 (surface) 

 

Thermo-49 analyser Continuous (10 sec) ± 1 ppbv, precision-

limited 

NCAS, Atmospheric Measurement Facility 

CO2, CH4 Picarro G2401 CRDS 

analyser 

Continuous (5 sec) CO2 precision 0.05 %, 

accuracy 0.05 % (±1sd); 

CH4 precision 0.05 %, 

accuracy 0.1 % (±1sd); 

U. Cambridge 

Crosson (2008) 

Halocarbons: (CHBr3, CHBr2Cl, CH3I, 

CH2ICl, C2Cl4) 

Custom-built GC-ECD  Continuous (~50 minutes) Species dependent, 

typically 0.1 – 1 pptv. 

U. Cambridge 

Gostlow et al. (2010), Robinson et al. (2014) 

 664 
Information about the meteorological measurements from Manus can be found at http://www.arm.gov/sites/twp/C1/instruments. 665 
  666 
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Table 3: Research flights made by the BAe 146 (FAAM) aircraft during the CAST project. 667 

Flight no.  Date Route Flight description and observations 

B823 18/1/14 Kota Kinabalu - Palau - Guam Measurements on last part of leg from KK to Palau. Flight mainly at low levels (in boundary layer) on Palau to 

Guam leg. O3 and CO decreasing further North (O3 30-12 ppb), higher (>35ppb) above boundary layer (BL).  

 

B824 22/1/14 Guam – Guam Heading SE from Guam, 4000 m then 2000 m, flight aborted early due to aircraft technical problem. GV 

followed around 30 minutes later. O3 15 ppb near Guam, falling to 10 ppb at 7°S.  

 

B825 24/1/14 Guam – Chuuk  Mixed altitudes (lowest 300 m), mainly within BL. O3 dropping from 15 ppb to 8 ppb towards Chuuk. CO ~105 

ppb on whole flight. SE flow.    

 

B826 25/1/14 Chuuk – Chuuk  Due South from Chuuk on 152°E to 2°N, back on 153°E. Start at 6000 m then step down to 300 m. O3 constant 

(~15 ppb) in boundary layer, 25 ppb above BL. Largely SE flow in BL, W-NW in free troposphere.  

 

B827 26/1/14 Chuuk – Chuuk  Due South from Chuuk on 152°N to 1°N then return on same track. In BL to 1°N, 4000 m on return North. Well 

mixed boundary layer. 20 ppb O3 to 1°N. BrO and CH2Cl2 observed. Largely SE flow in BL, W-NW in FT. 

 

B828 26/1/14 Chuuk - Guam Circled atoll at 100 m and 1500 m; then mixed altitude down to 300 m on way back to Guam. CO 100ppb round 

atoll in BL, O3 15 ppb. O3 10-13ppb as head North towards Guam.  

 

B829 29/1/14 Guam - Palau Mixed levels in BL down to 300 m. Low O3 (12 ppb) observed around island of Yap. Easterly flow.   

 

B830 29/1/14 Palau – Palau  Flight East along 7°N; mixed altitude down to 300 m; 4 stacked runs above each other at easterly end. Profile of 

BrO observed on stacked runs - higher at surface. Same CO and O3 profile at all levels so well mixed BL. 45 

ppb O3 and some NOx (25 ppt) seen at 4000 m. Higher N2O at higher altitudes. Largely SE flow.   

 

B831 30/1/14 Palau – Palau  Flight SE to Indonesian airspace (4°30’N, 141°30’E) then due South to 3°N. Mainly in BL, down to 300 m at 

most Southern point where O3 was 25-30 ppb. Westerly flow so some Asian outflow observed (CO < 100 ppb).  

 

B832 30/1/14 Palau – Guam  Low level runs in BL crossing day/night terminator. 30m in early part of flight before hitting low level 

convection. Above BL towards Guam. 15 ppb O3 during sunset - very constant as heading North. NW flow.  

 

B833 1/2/14 Guam – Guam  1st part of day/night chemistry flights. Stacked legs to E of Guam: 6000, 3000, 1500, 1000, and 300 m. NE flow. 

Followed GV for first half of flight (~30 minutes behind). 

 

B834 1/2/14 Guam – Guam 2nd part of day/night chemistry flights. Stacked legs to E of Guam: 6000, 3000, 1500, 1000, and 300 m. NE flow. 

 

B835 4/2/14 Guam – Chuuk  Fast transit to Chuuk above BL. 25 ppb O3, 85 ppb CO at 6000 m, then O3 lower as dropping down to Chuuk 

(~13 ppb). 
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B836 4/2/14 Chuuk – Chuuk  Head S along 152°E at 7000 m, some low flying in BL to southern most point (1°S) before intermediate height 

(2000 – 4000 m) back to Chuuk. 18 ppb O3 above BL to 1°N. Then profile down and less O3 in BL (13 ppb), CO 

70 ppb. At 1°S O3 9 ppb in NE flow. 

 

B837 5/2/14 Chuuk – Chuuk  Low level flying in BL to southernmost point (~1°N) to complement B836), then climb back and return at ~5000 

m. O3 decreasing in BL as head South. 20 ppb at 7°N, 11 ppb at 1°N. All in NE flow. 

 

B838 6/2/14 Chuuk – Chuuk  Round Chuuk atoll at 3 altitudes in BL (150, 500, and 1000 m). CO higher to East of Islands (Easterly flow). 

Could be storms over the islands bringing elevated CO to the upwind side. 

 

B839 12/2/14 Chuuk – Guam  SE of Guam at low level (500 m in BL), then above BL (5000 m) before descending down at lower levels in BL 

into Guam. O3 spikes in profiles up to 7500 m (Asian outflow). 75 ppb seen at 7000 m.  

 

B840 13/2/14 Guam – Palau  Start in FT (~6500 m), then low nearer Palau (1500 m); head to 4°N, 137°E before heading NW; same region as 

GV and GH. O3 30 ppb in FT, 12 ppb in BL, very stable. Easterly flow. 

 

B841 14/2/14 Palau – Palau  Flight to SW of Palau with stacked legs in BL parallel to ATC boundary. O3 15 ppb in BL. Easterly flow. 

  

B842 14/2/14 Palau - Guam Reverse flight to B840. Similar flow and O3.  

 

B843 16/2/14 Guam – Guam S from Guam to 7°N then E towards Chuuk before heading back to Guam; low latitude parts at low altitudes 

(<1000 m in BL) under convective band. O3 10-15 ppb in BL (E flow), elevated at higher levels (70-90 ppb), 

concurrent with elevated NO (30 ppt) (N flow).  

 

B844 17/2/14 Guam – Guam  SSE from Guam to fly under convective band (to 4°N) with low level runs (< 1000 m in BL). GV and GH flying 

nearby. Layers of elevated O3 and NOx at ~6000m (westerly flow). 

 

B845 17/2/14 Guam – Guam S from Guam to be West of convective band (to 6°N). Low level legs (< 1000 m in BL) at Southern end. Layers 

of elevated O3 and NOx at ~6000 m (westerly flow).  

 

B846 18/2/14 Guam - Palau Start in FT (~6500 m), then low nearer Palau (1500 m); head to 4°N, 137°E before heading NW; same region as 

GV and GH. O3 30 ppb in FT, 12 ppb in BL, very stable. Easterly flow. 

 

B847 18/2/14 Palau – Kota Kinabalu Steady ascent toward KK. Some Asian outflow observed on initial ascent (CO ~ 140 ppb). Westerly flow.  

 

 668 
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Figure Caption List 669 

Figure 1.   Examples of trajectory-based forecast products used for multi-aircraft flight planning. 670 

These plots are for February 13 2014 when all three aircraft were in the same region 671 

(see Figure 7 in Pan et al. (2016)). The three panels show the location of air parcels 672 

which had been below 1 km altitude in the preceding 12 days at (a) 16-18 km; (b) 14-16 673 

km; and (c) 12-14 km. The number in each box is the percentage of parcels in that box 674 

from below 1 km in the preceding 12 days. During the campaign, they were available as 675 

1, 3 and 5 day forecasts for flight planning, and the NAME model was driven by 676 

analyses and forecasts from Met Office operational model run at 25 km horizontal 677 

resolution. 678 

 679 

Figure 2:  Map of FAAM BAe-146 flight tracks during January and February 2014.  The flights 680 

tracks are coloured by altitude. The islands of Guam, Palau and Chuuk are marked. The 681 

background shows Jan-Feb averaged Chlorophyll-a concentrations, measured by the 682 

MODIS satellite (NASA Giovanni: Acker et al., 2007). The inset shows an enlarged 683 

area around Chuuk Atoll. 684 

 685 

Figure 3:  Ozone and carbon monoxide mixing ratios measured in all CAST flights as a function 686 

of latitude and altitude (left). The means and associated 2 standard deviations of ozone 687 

and carbon monoxide are shown as a function of altitude (right). See text and Table 1 688 

for instrumental details. 689 

 690 

Figure 4:  Plots of O3 against CO coloured by (upper) NO and (lower) relative humidity (10 s 691 

averaged data). 692 

 693 

Figure 5:  CHBr3 mixing ratios (colours) sampled on the FAAM aircraft during CAST using the 694 

whole air sampler (squares) and the on-board GC-MS (circles). Panel (a) contains all 695 

measurements made at altitudes less than 1 km, and the enlarged inset (bottom left) 696 

shows the values around the Chuuk Atoll. The lines associated with each measurement 697 

in the inset indicate the instantaneous wind speed measured by the aircraft. Panel (b) 698 

contains the measurements at altitudes greater than 1 km, and the inset shows the 699 

vertical profile of all measurements. 700 

 701 

Figure 6:  Surface observations of wind, O3, CO2, CH4, C2Cl4, CHBr3 and CH3I at the ARM 702 

Facility on Manus Island, Papua New Guinea (2.07°S, 147.4°E) from February 1-24, 703 
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2014. The time shown in the x-axis is Universal Time. The shading indicates the local 704 

time, with the darker bands representing night-time. 705 

 706 

Figure 7:  Daily observed ozone profile in Manus (left) and corresponding MACC forecast with a 707 

lead time of 1 day (middle) and 4 days (right). 708 

 709 

Figure 8:  AIITS scattering patterns recorded from ice particles in the UTLS, at altitudes of ~ 16 710 

km and temperatures of ~ -80°C. The pictures are indicative of (left) a smooth quasi-711 

spherical ice particle, (middle) a columnar crystal, and (right) a pristine hexagonal plate. 712 

 713 

Figure 9:  Flight path of the NASA Global Hawk on 10th March 2015 (blue). OCO-2 (green) and 714 

GOSAT (red) soundings are shown which coincide temporally with the flight leg 715 

between 25°N, 127°W and 18°N, 125°W. MODIS cloud fraction data (Platnick et al., 716 

2015) coincident with the OCO-2 overpass at 2140 UTC is plotted in grayscale, 717 

showing the largely cloud-free conditions encountered during this leg of the flight. 718 

 719 
  720 
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 721 

 722 

 723 

Figure 7.   Examples of trajectory-based forecast products used for multi-aircraft flight planning. 724 

These plots are for February 13 2014 when all three aircraft were in the same region 725 

(see Figure 7 in Pan et al. (2016)). The three panels show the location of air parcels 726 

which had been below 1 km altitude in the preceding 12 days at (a) 16-18 km; (b) 14-16 727 

km; and (c) 12-14 km.  The number in each box is the percentage of parcels in that box 728 

from below 1 km in the preceding 12 days. During the campaign, they were available as 729 

1, 3 and 5 day forecasts for flight planning, and the NAME model was driven by 730 

analyses and forecasts from Met Office operational model run at 25 km horizontal 731 

resolution. NB Only a fraction of the trajectories are shown in each plot, so the density 732 

of dots is not comparable at different altitudes.  733 
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 734 

 735 

 736 

Figure 2:  Map of FAAM BAe-146 flight tracks during January and February 2014.  The flights 737 

tracks are coloured by altitude. The islands of Guam, Palau and Chuuk are marked. The 738 

background shows Jan-Feb averaged Chlorophyll-a concentrations, measured by the 739 

MODIS satellite (NASA Giovanni, Acker et al., 2007). The inset shows an enlarged 740 

area around Chuuk Atoll. 741 

  742 
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 743 

 744 

 745 

Figure 3:  Ozone and carbon monoxide mixing ratios measured in all CAST flights as a function 746 

of latitude and altitude (left). The means and associated 2 standard deviations of ozone 747 

and carbon monoxide are shown as a function of altitude (right). See text and Table 1 748 

for instrumental details. 749 

  750 
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 751 

 752 

 753 

 754 

Figure 4:  Plots of O3 against CO coloured by (upper) NO and (lower) relative humidity (10 s 755 

averaged data). 756 

  757 
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 758 

 759 

 760 

 761 

Figure 5:  CHBr3 mixing ratios (colours) sampled on the FAAM aircraft during CAST using the 762 

whole air sampler (squares) and the on-board GC-MS (circles). Panel (a) contains all 763 

measurements made at altitudes less than 1 km, and the enlarged inset (bottom left) 764 

shows the values around the Chuuk Atoll. The lines associated with each measurement 765 

in the inset indicate the instantaneous wind speed measured by the aircraft. Panel (b) 766 

contains the measurements at altitudes greater than 1 km, and the inset shows the 767 

vertical profile of all measurements. 768 
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 769 
 770 

 771 

Figure 6:  Surface observations of wind, O3, CO2, CH4, C2Cl4, CHBr3 and CH3I at the ARM 772 

Facility on Manus Island, Papua New Guinea (2.07°S, 147.4°E) from February 1-24, 773 

2014. The time shown in the x-axis is Universal Time. The shading indicates the local 774 

time, with the darker bands representing night-time. 775 

  776 
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 777 

 778 

Figure 7:  Daily observed ozone profile in Manus (left) and corresponding MACC forecast with a lead 779 

time of 1 day (middle) and 4 days (right). 780 

 781 

  782 
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 783 

 784 
 785 
 786 
Figure 8:  AIITS scattering patterns recorded from ice particles in the UTLS, at altitudes of ~ 16 787 

km and temperatures of ~ -80oC. The pictures are indicative of (left) a smooth quasi- 788 

spherical ice particle, (middle) a columnar crystal, and (right) a pristine hexagonal plate. 789 
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 792 

 793 

 794 

Figure 9:  Flight path of the NASA Global Hawk on 10th March 2015 (blue). OCO-2 (green) and 795 

GOSAT (red) soundings are shown which coincide temporally with the flight leg 796 

between 25°N, 127°W and 18°N, 125°W. MODIS cloud fraction data (Platnick et al., 797 

2015) coincident with the OCO-2 overpass at 2140 UTC is plotted in grayscale, 798 

showing the largely cloud-free conditions encountered during this leg of the flight. 799 
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