872 research outputs found
Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines
<p>Abstract</p> <p>Introduction</p> <p>The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT).</p> <p>Materials and methods</p> <p>Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX.</p> <p>Results</p> <p>Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA.</p> <p>Conclusion</p> <p>Our <it>in vitro </it>data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines.</p
In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model
<p>Abstract</p> <p>Purpose</p> <p>Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model.</p> <p>Methods and material</p> <p>Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic <sup>18</sup>F-Fluorodeoxyglucose Positron Emission Tomography (<sup>18</sup>F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls.</p> <p>Results</p> <p>SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts.</p> <p>The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The <sup>18</sup>F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment.</p> <p>Conclusion</p> <p>SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model.</p
Gamma-ray and neutrino emission from misaligned microquasars
Microquasars are accreting X-ray binary systems with non-thermal radio jets.
In some of these systems the jet is expected to be strongly misaligned with the
perpendicular to the orbital plane. If the donor star is an early-type star,
the jet could collide with the stellar wind producing a standing shock between
the compact object and the stellar surface. Relativistic particles injected by
the jet can be re-accelerated and isotropized at the colliding region. If the
jet has hadronic content, TeV protons will diffuse into the inner, dense wind
leading to gamma-ray and neutrino production from interactions with the matter
of the wind. In the case of very powerful jets, the wind pressure can be
overbalanced and the jet might impact directly onto the stellar surface. We
present estimates of the gamma-ray and neutrino luminosities for different sets
of parameters in these scenarios and we briefly discuss the effects of this
radiation on the donor star and its detectability with current instruments.Comment: 8 pages, 2 figures, accepted for publication in A&
Recommended from our members
High resolution trace element and isotopic imaging of microbial systems by NanoSIMS
The NanoSIMS 50 is the state of the art in high spatial resolution secondary ion mass spectrometry (SIMS), combining unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (minimum detection limit of {approx}200 atoms). The NanoSIMS has an array of detectors, enabling simultaneous collection of 5 species originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability provides a novel new approach to the study of microbial systems. We have applied our NanoSIMS to various microbial systems. We have analyzed sub-regions of bacterial cells, biofilms, and other associated materials to map trace element and isotopic ratios on a submicron scale. Growth and metabolism have been tracked using stable isotope labels. High resolution SIMS is particularly powerful when used in combination with other high resolution techniques, such as FIB and TEM. Examples will be presented to demonstrate the range of capabilities of this technique for microbial systems
Recommended from our members
Fish Movement and Dietary History Derived from Otolith (delta)13C
Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location
Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids
This is an expert consensus from the European Neuroendocrine Tumor Society recommending best practice for the management of pulmonary neuroendocrine tumors including typical and atypical carcinoids. It emphasizes the latest discussion on nomenclature, advances and utility of new diagnostic techniques as well as the limited evidence and difficulties in determining the optimal therapeutic strateg
Association of Type and Location of BRCA1 and BRCA2 Mutations With Risk of Breast and Ovarian Cancer (vol 313, pg 1347, 2015)
Heli Nevanlinna ja Kristiina Aittomäki ovat CIMBA Consortium -työryhmän jäseniä.IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19 581 carriers of BRCA1 mutations and 11 900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317(12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682(6%) with ovarian cancer, 272(2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% Cl, 1.22-1.74; P = 2 x 10(-6)), c.4328 to c.4945 (BCCR2; RH R = 1.34; 95% Cl, 1.01-1.78; P =.04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% Cl, 1.22-1.55; P = 6 x 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% Cl, 0.56-0.70; P = 9 x 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% Cl, 1.06-2.78; P =.03), c.772 to c.1806 (BCCRI; RHR = 1.63; 95% Cl, 1.10-2.40; P =.01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% Cl, 1.69-3.16; P =.00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% Cl, 0.44-0.60; P = 6 x 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% Cl, 0.41-0.80; P =.001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.Peer reviewe
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Approximation and inference methods for stochastic biochemical kinetics - a tutorial review
Stochastic fluctuations of molecule numbers are ubiquitous in biological
systems. Important examples include gene expression and enzymatic processes in
living cells. Such systems are typically modelled as chemical reaction networks
whose dynamics are governed by the Chemical Master Equation. Despite its simple
structure, no analytic solutions to the Chemical Master Equation are known for
most systems. Moreover, stochastic simulations are computationally expensive,
making systematic analysis and statistical inference a challenging task.
Consequently, significant effort has been spent in recent decades on the
development of efficient approximation and inference methods. This article
gives an introduction to basic modelling concepts as well as an overview of
state of the art methods. First, we motivate and introduce deterministic and
stochastic methods for modelling chemical networks, and give an overview of
simulation and exact solution methods. Next, we discuss several approximation
methods, including the chemical Langevin equation, the system size expansion,
moment closure approximations, time-scale separation approximations and hybrid
methods. We discuss their various properties and review recent advances and
remaining challenges for these methods. We present a comparison of several of
these methods by means of a numerical case study and highlight some of their
respective advantages and disadvantages. Finally, we discuss the problem of
inference from experimental data in the Bayesian framework and review recent
methods developed the literature. In summary, this review gives a
self-contained introduction to modelling, approximations and inference methods
for stochastic chemical kinetics.Comment: 73 pages, 12 figures in J. Phys. A: Math. Theor. (2016
- …