270 research outputs found

    Intended and Unintended Consequences: The 2006 Fair Minimum Wage Amendment of the Ohio Constitution

    Get PDF
    This Article first provides a brief overview of federal and Ohio minimum wage law. The Article then examines the text of the 2006 Amendment. The third section delves into the provisions of HB 690 and the differences between HB 690 and the Amendment. The final section explores litigation issues arising from these differences

    The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat.

    Get PDF
    Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon's environment are similar to the Komodo dragon's salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals' environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the microbes residing in and on our bodies and may have important implications for health and disease. A full characterization of host-microbe sharing in both closed and open environments will provide crucial information that may enable the improvement of health in humans and in captive animals, both of which experience a greater incidence of disease (including chronic illness) than counterparts living under more ecologically natural conditions

    Characterizing unknown systematics in large scale structure surveys

    Get PDF
    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.Comment: 24 pages, 6 figures; Expanded discussion of results, added figure 2; Version to be published in JCA

    Lumbopelvic Muscle Changes Following Long-Duration Spaceflight

    Get PDF
    Long-duration spaceflight has been shown to negatively affect the lumbopelvic muscles of crewmembers. Through analysis of computed tomography scans of crewmembers on 4- to 6-month missions equipped with the interim resistive exercise device, the structural deterioration of the psoas, quadratus lumborum, and paraspinal muscles was assessed. Computed tomography scans of 16 crewmembers were collected before and after long-duration spaceflight. The volume and attenuation of lumbar musculature at the L2 vertebral level were measured. Percent changes in the lumbopelvic muscle volume and attenuation (indicative of myosteatosis, or intermuscular fat infiltration) following spaceflight were calculated. Due to historical studies demonstrating only decreases in the muscles assessed, a one-sample t test was performed to determine if these decreases persist in more recent flight conditions. Crewmembers on interim resistive exercise device-equipped missions experienced an average 9.5% (2.0% SE) decrease in volume and 6.0% (1.5% SE) decrease in attenuation in the quadratus lumborum muscles and an average 5.3% (1.0% SE) decrease in volume and 5.3% (1.6% SE) decrease in attenuation in the paraspinal muscles. Crewmembers experienced no significant changes in psoas muscle volume or attenuation. No significant changes in intermuscular adipose tissue volume or attenuation were found in any muscles. Long-duration spaceflight was associated with preservation of psoas muscle volume and attenuation and significant decreases in quadratus lumborum and paraspinal muscle volume and attenuation

    The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : including covariance matrix errors

    Get PDF
    JP acknowledges support from the UK Science & Technology Facilities Council (STFC) through the consolidated grant ST/K0090X/1 and from the European Research Council through the ‘Starting Independent Research’ grant 202686, MDEPUGS. AGS acknowledges support from the Trans-regional Collaborative Research Centre TR33 ‘The Dark Universe’ of the German Research Foundation (DFG).We present improved methodology for including covariance matrices in the error budget of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy clustering measurements, revisiting Data Release 9 (DR9) analyses, and describing a method that is used in DR10/11 analyses presented in companion papers. The precise analysis method adopted is becoming increasingly important, due to the precision that BOSS can now reach: even using as many as 600 mock catalogues to estimate covariance of two-point clustering measurements can still lead to an increase in the errors of ∼20 per cent, depending on how the cosmological parameters of interest are measured. In this paper, we extend previous work on this contribution to the error budget, deriving formulae for errors measured by integrating over the likelihood, and to the distribution of recovered best-fitting parameters fitting the simulations also used to estimate the covariance matrix. Both are situations that previous analyses of BOSS have considered. We apply the formulae derived to baryon acoustic oscillation (BAO) and redshift-space distortion (RSD) measurements from BOSS in our companion papers. To further aid these analyses, we consider the optimum number of bins to use for two-point measurements using the monopole power spectrum or correlation function for BAO, and the monopole and quadrupole moments of the correlation function for anisotropic-BAO and RSD measurements.Publisher PDFPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    Get PDF
    We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering

    Get PDF
    With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h1h^{-1}Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z=0.59z=0.59, to obtain constraints on the Hubble expansion rate H(z)H(z), the angular-diameter distance DA(z)D_A(z), the normalized growth rate f(z)σ8(z)f(z)\sigma_8(z), and the physical matter density Ωmh2\Omega_mh^2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs\{D_A(0.59)r_{s,fid}/r_s Mpc\rm Mpc, H(0.59)rs/rs,fidH(0.59)r_s/r_{s,fid} kms1Mpc1km s^{-1} Mpc^{-1}, f(0.59)σ8(0.59)f(0.59)\sigma_8(0.59), Ωmh2}\Omega_m h^2\} = {1427±26\{1427\pm26, 97.3±3.397.3\pm3.3, 0.488±0.0600.488 \pm 0.060, 0.135±0.016}0.135\pm0.016\}, where rsr_s is the comoving sound horizon at the drag epoch and rs,fid=147.66r_{s,fid}=147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, ww, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk\Omega_k, is 0.3 per cent. We do not find deviation from flat Λ\LambdaCDM.Comment: 15 pages, 11 figures. The latest version matches and the accepted version by MNRAS. A bug in the first version has been identified and fixed in the new version. We have redone the analysis with newest data (BOSS DR12

    Ameliorating Systematic Uncertainties in the Angular Clustering of Galaxies: A Study using SDSS-III

    Get PDF
    We investigate the effects of potential sources of systematic error on the angular and photometric redshift, z_phot, distributions of a sample of redshift 0.4 < z < 0.7 massive galaxies whose selection matches that of the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass sample. Utilizing over 112,778 BOSS spectra as a training sample, we produce a photometric redshift catalog for the galaxies in the SDSS DR8 imaging area that, after masking, covers nearly one quarter of the sky (9,913 square degrees). We investigate fluctuations in the number density of objects in this sample as a function of Galactic extinction, seeing, stellar density, sky background, airmass, photometric offset, and North/South Galactic hemisphere. We find that the presence of stars of comparable magnitudes to our galaxies (which are not traditionally masked) effectively remove area. Failing to correct for such stars can produce systematic errors on the measured angular auto-correlation function, w, that are larger than its statistical uncertainty. We describe how one can effectively mask for the presence of the stars, without removing any galaxies from the sample, and minimize the systematic error. Additionally, we apply two separate methods that can be used to correct the systematic errors imparted by any parameter that can be turned into a map on the sky. We find that failing to properly account for varying sky background introduces a systematic error on w. We measure w, in four z_phot slices of width 0.05 between 0.45 < z_phot < 0.65 and find that the measurements, after correcting for the systematic effects of stars and sky background, are generally consistent with a generic LambdaCDM model, at scales up to 60 degrees. At scales greater than 3 degrees and z_phot > 0.5, the magnitude of the corrections we apply are greater than the statistical uncertainty in w.Comment: Accepted by MNRA

    The coronal line regions of planetary nebulae NGC6302 and NGC6537: 3-13um grating and echelle spectroscopy

    Get PDF
    We report on advances in the study of the cores of NGC6302 and NGC6537 using infrared grating and echelle spectroscopy. In NGC6302, emission lines from species spanning a large range of ionization potential, and in particular [SiIX]3.934um, are interpreted using photoionization models (including CLOUDY), which allow us to reestimate the central star's temperature to be about 250000K. All of the detected lines are consistent with this value, except for [AlV] and [AlVI]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154eV). A similar depletion pattern is observed in NGC6537. Echelle spectroscopy of IR coronal ions in NGC6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (< 22km/s FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [NeV]3426A. We note the absence of a hot bubble, or a wind blown bipolar cavity filled with a hot plasma, at least on 1'' and 10km/s scales. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.Comment: Accepted for publication in MNRA
    corecore