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Abstract. Photometric large scale structure (LSS) surveys probe the largest volumes in
the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric
calibration leads to biases in our measurements of the density fields of LSS tracers such as
galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies
have proposed using cross-correlations between different redshift slices or cross-correlations
between different surveys to reduce the effects of such systematics. In this paper we develop
a method to characterize unknown systematics. We demonstrate that while we do not have
sufficient information to correct for unknown systematics in the data, we can obtain an
estimate of their magnitude. We define a parameter to estimate contamination from unknown
systematics using cross-correlations between different redshift slices and propose discarding
bins in the angular power spectrum that lie outside a certain contamination tolerance level.
We show that this method improves estimates of the bias using simulated data and further
apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.
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1 Introduction

Large scale structure (LSS) offers a complementary probe to the cosmic microwave back-
ground (CMB) to do precision cosmology. Owing to the large volume with full three-
dimensional (3D) information that is available in LSS surveys, they offer the promise to
provide competitive, or even better, constraints on cosmological parameters compared to
CMB-based experiments, in the near future. For example, it is possible that the next level
of improved constraints on primordial non-Gaussianity would come from LSS [1–8].

Ideally, in order to maximize volume, one would like a full-sky spectroscopic LSS survey
to very high redshift. The Baryon Oscillation Spectroscopic Survey (BOSS) [9] currently
provides the largest volume of spectroscopic measurements [10], and next generation exper-
iments such as the Dark Energy Spectroscopic Instrument (DESI) [11] and Euclid [12] will
increase the observed volume by an order of magnitude. However, redshift determination in
photometric surveys is simpler and they invariably probe larger volumes. A large amount of
Sloan Digital Sky Survey (SDSS) [13, 14] data is based on photometry [15, 16]; with future
surveys such as the Dark Energy Survey (DES) [17] and the Large Synoptic Survey Telescope
(LSST) [18] the amount of photometric data will virtually explode.

A major challenge in LSS photometric surveys, however, is understanding and account-
ing for various systematics in the data [15, 19–24]. Without properly correcting for sample
systematics in the observed number density of objects, we cannot obtain an accurate mea-
surement of the angular power spectrum of the LSS tracer, and in turn cannot extract
cosmological information from it. Potential sources of contamination in the data include
stellar obscuration, sky brightness, seeing variations, dust extinction, color offsets, and mag-
nitude errors. While it has been possible to construct maps for these systematic fields and
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account for them in the data, what we will focus on in this paper is the effects of unknown
systematics.1

We propose a method to use cross-correlations between different redshift slices to esti-
mate contamination from unknown systematics in the auto-power spectra. Cosmologically,
the cross-power between two LSS samples that have no overlap in redshift should be negli-
gibly small.2 In practice, however, a real-observation detects a non-zero signal, either due
to an overlap in redshift or due to common systematics [15, 21]. We can, in fact, even es-
timate the cross-power theoretically using the overlap of the redshift distribution between
different redshift slices. Subtracting the known systematic fields from the difference between
the measured and theoretically expected cross-power yields the contribution from unknown
systematics.

We introduce an “unknown contamination coefficient”, which we denote Uα,β` , between
any two redshift slices α and β, ` being the multipole moment. This parameter can be
thought of as approximately a product of the ratio of power due to unknown systematics to
the observed power in each of the two redshift slices. We drop all ` bins in the auto-power
spectra of both redshift slices α and β for which Uα,β` is greater than some contamination
threshold. We propose that only the remaining bins should be trusted to not be contaminated
significantly with unknown systematics and consequently be used for cosmological parameter
estimation.

The plan of this paper is as follows. We begin with a review of the theory and measure-
ment of the angular power spectrum, for use later in the paper, in section 2. In section 3,
we describe our method to estimate the effects of unknown systematics and exclude signif-
icantly contaminated ` bins. We first test the method on simulated angular power spectra
contaminated with unknown systematics and demonstrate that it leads to improved bias es-
timates, in section 4. In section 5, we then account for unknown systematics in the SDSS-III
Data Release Eight (SDSS-III DR8) luminous red galaxies (LRGs) sample [15, 19, 29], as an
example of application to real data. We conclude with a discussion in section 6.

2 Review of the angular power spectrum

The power spectrum of the matter distribution in the Universe has two important features
on scales relevant to current sky surveys. The first is a turn-over at k ∼ 0.01h Mpc−1, which
provides a measure of the size of the horizon at matter-radiation equality [30]. The second
is oscillations caused by acoustic waves in the baryon-photon plasma in the early Universe,
the scale of which is set by the sound horizon at hydrogen recombination at z ∼ 1000 [31–
37]. Together these features offer the possibility of directly measuring the angular diameter
distance as a function of redshift and thus constraining standard cosmological parameters
[38–46].

Practically, it is simpler to carry out an imaging survey compared to a spectroscopic
survey in a given amount of telescope time. We can therefore utilize large photometric surveys
to more precisely measure the angular power spectrum, and compare these measurements

1We define unknown systematics as any remaining systematics in the data after we have corrected for
known systematics using given templates and assuming some model for the corrections. In addition to truly
unaccounted sources of contamination in the data, these may include systematics due to inaccurate maps
and/or an incomplete modeling of known systematic fields.

2Here we are not taking into account effects from lensing that could lead to a magnification bias for high
redshift objects, as these effects will be small on the linear scales considered in this work [25–28]. We are also
assuming a negligible real-space contribution to the correlation signal on very large scales.
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to a theoretical 3D power spectrum by using the spectroscopic redshift distribution of the
sample. In the following subsections we briefly review the theory and computation of the
angular power spectrum.

2.1 From the full sample distribution to the angular power spectrum

The overdensity of dark matter halos is related to the underlying matter overdensity through
the bias factor b1 (assuming a linear bias), δhalo = b1δmatter. The halo power spectrum for
halos of mass M at redshift z is thus given by Phalo(M,k, z) = b21(M, z)Pmatter(k, z).

The theoretical angular power spectrum can be calculated by projecting the full 3D
power spectrum on the sky. Using the full Bessel integration on the largest scales and
accounting for redshift space distortions as described, for example, in [47], the angular power
spectrum is given by

C` = Cgg
` + Cgv

` + Cvv
` + a. (2.1)

The superscripts g and v denote galaxy and velocity terms, respectively, and a is an extra
(constant) shot noise-like term that can be added to obtain a better fit to the non-linear
power spectrum [48]. The three contributions to the angular power spectrum above are
given by the integrals [47]

Cgg
` =

2

π

∫
d ln k k3Pmatter(k, 0)W 2

` (k), (2.2)

Cgv
` =

4

π

∫
d ln k k3Pmatter(k, 0)W`(k)W r

` (k), (2.3)

Cvv
` =

2

π

∫
d ln k k3Pmatter(k, 0) [W r

` (k)]2 , (2.4)

where the window functions can be calculated using

W`(k) =

∫
dz b1

D(z)

D(0)

dN

dz
j`(kr), (2.5)

W r
` (k) =

∫
dz Ω0.56

m (z)
D(z)

D(0)

dN

dz

[
2`2 + 2`− 1

(2`− 1)(2`+ 3)
j`(kr)

− `(`− 1)

(2`− 1)(2`+ 1)
j`−2(kr)−

(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
j`+2(kr)

]
. (2.6)

Here dN/dz is the redshift distribution normalized to unity, r(z) is the comoving distance,
and j`(kr) is the `th order spherical Bessel function. In the flat sky (large `) limit, one can
switch to the Limber approximation [49].

2.2 Angular power spectrum estimation

The angular power spectrum is usually calculated using the optimal quadratic estimator
(OQE) method described in [47, 50–52]. We start by parameterizing the power spectrum
with N step functions in `, C̃i`,

C` =
∑
i

piC̃
i
`, (2.7)
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where the pi are the parameters that determine the power spectrum. We form quadratic
combinations of the data,

qi =
1

2
xTCiC−1Cix, (2.8)

where x is a vector of pixelized galaxy overdensities, C is the covariance matrix of the data,
and Ci is the derivative of the covariance matrix with respect to pi. The covariance matrix
requires a prior power spectrum to account for cosmic variance; we estimate the prior by
computing an estimate of the power spectrum with a flat prior and then iterating once. We
also construct the Fisher matrix,

Fij =
1

2
tr
[
CiC−1CjC−1

]
. (2.9)

The power spectrum can then be estimated, p̂ = F−1q, with covariance matrix F−1.

2.3 Markov-Chain Monte-Carlo procedure

Having discussed the theoretical and observed angular power spectra, we now describe our
method to obtain the bias b1 and the non-linear fitting parameter a in each redshift slice.

We use a Markov-Chain Monte-Carlo (MCMC) approach to explore the available pa-
rameter space using a modified version of the widely-used package CosmoMC [53]. We calculate
the linear matter power spectrum using the CAMB code [54] included in the CosmoMC package,
and apply the HaloFit prescription [55] to account for non-linear effects on the matter power
spectrum. The resulting matter power spectrum is used in the equations of section 2.1 to
calculate the theoretical angular power spectrum, which is then used in conjunction with
the photometric power spectrum outlined in section 2.2 to calculate the likelihood (assumed
Gaussian), that is the input to the MCMC procedure,

χ2 = (d− t)T . C−1 . (d− t). (2.10)

Here d is the data C` vector, t is the theory C` vector convolved with the full survey window
function, and C is, as before, the covariance matrix. Although the OQE used to calculate
the data vector is designed to compute nearly anti-correlated power spectra across different
multipole bins, it does retain a small contribution (. 5%) from other multipole bins. We
therefore convolve the theoretical spectrum with the full window function before calculating
the likelihood. This step is especially important, for example, in models with non-zero
primordial non-Gaussianity, since the power spectrum rises dramatically at low ` in these
models [56–58]. Maximizing the likelihood in the full parameter space in our MCMC analysis
provides constraints on the bias and the non-linear fitting parameter in each redshift slice.

For our analysis in sections 4 and 5 we use standard cosmological data, including the
WMAP nine-year CMB data [59, 60] and the “Union 2” supernova data set that includes
557 supernovae [61], as our baseline model. The LSS data that we use is the observations
of LRGs in the SDSS-III DR8 sample [15, 19, 29]. As mentioned earlier, we only use photo-
metric angular power spectra of LRGs. The underlying redshift distributions, however, are
calculated using the BOSS spectroscopic redshifts of the same sample.

3 Characterizing unknown systematics

Systematics limit the amount of information that can be extracted from any survey [20, 21].
The observed LSS tracer density field is likely to be contaminated with residual system-
atics, the most dominant sources being stellar contamination, sky brightness, and image
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quality/seeing variations. While it is possible (to some extent) to remove the effects of such
known systematics, how do we account for unknown systematics? In this section we will
describe a method to use cross-correlations between different redshift slices to selectively
exclude certain ` bins that appear to have large unknown contamination. We propose that
only the remaining bins should be used for cosmological parameter estimation.

3.1 The method

In the absence of strong evidence of non-linear effects of systematics on the observed density
field, we adopt a linear relationship between systematics and the observed density [15, 19].
More general multiplicative errors have been considered in [20, 23, 62–64]. We find that
systematics in the SDSS galaxy data that we consider are well-modeled with additive errors
and adopt this simple parameterization here. We therefore write the following expression,

δαg,obs(`,m) = δαg,true(`,m) +

Nsys∑
i=1

εαi (`)δi(`,m) + uα(`,m), (3.1)

where δαg,obs(`,m) and δαg,true(`,m) are the observed and true tracer density fields in the αth

redshift slice, δi(`,m) is the contribution of the ith systematic (with a total of Nsys systemat-
ics) to the density map, and εαi (`) (assumed independent of m) is a weight factor that charac-
terizes the effect of the ith systematic. We further parameterize the effect of any unknown sys-
tematics as uα(`,m). The above equation holds in each ` bin, with the observed and true an-
gular auto-power spectrum in each redshift slice defined as Cα,α`,obs ≡

〈
δαg,obs(`,m)δαg,obs(`,m)

〉
and Cα,α`,true ≡

〈
δαg,true(`,m)δαg,true(`,m)

〉
. Here we have assumed isotropy as there is no evi-

dence for anisotropy in the LSS power spectrum [65].
Let us assume that the true density field is not correlated with any of the system-

atics, so that
〈
δαg,true(`,m)δi(`,m)

〉
= 0 and

〈
δαg,true(`,m)uβ(`,m)

〉
= 0. We can measure

the observed auto-power spectra Cα,α`,obs, the cross-correlations between the observed density

map and systematics
〈
δαg,obs(`,m)δi(`,m)

〉
, and the correlations amongst various systematics

〈δi(`,m)δj(`,m)〉. We can now write the following set of Nsys equations in each ` bin of the
αth redshift slice,〈

δαg,obs(`,m)δj(`,m)
〉

=

Nsys∑
i=1

εαi (`)〈δi(`,m)δj(`,m)〉+ 〈uα(`,m)δj(`,m)〉, j = 1, . . . , Nsys. (3.2)

The unknown quantities in the above equations are the weights εαi (`) and the correlations
〈uα(`,m) δj(`,m)〉. We do not have a sufficient number of equations to solve for all of these
quantities (we have Nsys equations and 2Nsys unknowns). We investigated the use of cross-
correlations between different redshift slices to solve for the remaining unknowns, but this
approach failed, as we will now demonstrate.

We can write the following equation connecting the true and observed angular auto- or
cross-power spectra,

Cα,β`,true = Cα,β`,obs −
Nsys∑
i,j=1

εαi (`)εβj (`)〈δi(`,m)δj(`,m)〉 − Uα,β` , (3.3)
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where Uα,β` =
∑Nsys

i=1

(
εαi (`)〈δi(`,m)uβ(`,m)〉+ εβi (`)〈δi(`,m)uα(`,m)〉

)
+ 〈uα(`,m)uβ(`,m)〉.

Although we do not know a priori the true auto-power spectra Cα,α`,true, we can estimate the

true cross-power spectra Cα,β`,true (α 6= β) theoretically using the equations given in section 2.1.
Here we assume that the true cross-power closely follows background cosmology, although,
strictly speaking, this is correct only if the overlap in the redshift distribution between the
two slices is small. We need the bias in each of the two redshift slices α and β — let us
assume that we know this — and the cross-redshift distribution, which we can calculate as
the overlap of that in the two redshift slices. Then the only remaining unknowns in these
equations are the weights εαi (`), the correlations 〈uα(`,m)δj(`,m)〉, and additionally the
correlations 〈uα(`,m)uβ(`,m)〉. One can easily check that we still lack a sufficient number
of equations to solve for all unknown quantities. Therefore we can not correct for unknown
systematics in the data. We can, however, estimate their contribution and decide to drop
those ` bins that are dominated by unknown systematics.

In order to achieve this goal, we first obtain a zeroth order estimate of the weights
εαi (`) by solving eq. (3.2) in each ` bin under the assumption that uα(`,m) = 0. We then
obtain the systematics-corrected auto-power spectrum in each redshift slice (again under the
assumption that uα(`,m) = 0) using

Cα,α`,true = Cα,α`,obs −
Nsys∑
i,j=1

εαi (`)εαj (`)〈δi(`,m)δj(`,m)〉. (3.4)

We now perform an MCMC procedure using the above auto-power spectra to fit for the
background cosmology, the bias, and the non-linear fitting parameter a (introduced in eq.
(2.1)) in each redshift slice. With these parameters in hand, we obtain a theoretical estimate

of Cα,β`,true (α 6= β) as described earlier. We also include the a parameter in the cross-power

— ideally this should be zero, so we add the maximum value of
√
|aα| |aβ| (where aα and aβ

correspond to values of a for redshift slices α and β) only in the cross-power of neighboring

redshift slices. Finally, using eq. (3.3) we solve for Uα,β` (α 6= β).3

We now define an unknown contamination coefficient as

Uα,β` =

(
Uα,β`

)2
Cα,α`,obsC

β,β
`,obs

, α 6= β, (3.5)

and compare it to the quantity

n2
σ
(
Cα,α`,obs

)
σ
(
Cβ,β`,obs

)
Cα,α`,obsC

β,β
`,obs

, (3.6)

where n refers to the sigma tolerance level. We drop all ` bins in the auto-power of each
redshift slice α and β for which Uα,β` is greater than the quantity in eq. (3.6).4 For example,
we can choose n = 1 and perform a 1σ-cut on unknown systematics. The motivation for this
definition is that it provides some idea of unknown contamination in units of the error in the

3When calculating Uα,β` , we do not convolve the theoretical cross-power with the survey window function.
4Clipping the cross-power at nσ will in general introduce a bias in the variance of each auto-power spectrum.

We checked that this effect is small for two Gaussian random distributions, introducing a percent level bias
for a 2σ-cut. We ignore this effect here.
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observed auto-power. This is not a precise cut, however, as there is an error associated with
the cross-power itself as well. Nevertheless, it does serve as a uniform measure to quantify
the level of unknown contamination. After performing this cut, we use the remaining bins
in the auto-power spectra to fit for the background cosmology, the bias and the a parameter
in each redshift slice. If the new bias values lie within one sigma of the previous estimates of
the bias then these are the final values to use. If not, then we repeat this analysis until the
bias lies within one sigma of the previous iteration.

Summary. To summarize, we use the following algorithm to characterize unknown sys-
tematics —

1. Correct the observed auto-power spectra for known systematics, assuming no unknown
contamination, using eq. (3.2) with uα(`) = 0 and eq. (3.4).

2. Perform an MCMC analysis over background cosmological parameters, the bias, and
the non-linear fitting parameter a in each redshift slice.

3. Use best-fit values of the bias and a parameters to obtain theoretical cross-power spec-
tra. Compare the resulting true cross-power with the observed cross-power using eq.
(3.3) to obtain Uα,β` , and subsequently obtain Uα,β` defined in eq. (3.5).

4. Perform an nσ-cut on unknown systematics by excluding all ` bins in each auto-power
spectrum for which Uα,β` with any other redshift slice is greater than the quantity in
eq. (3.6).

5. Using remaining bins in the auto-power spectra, perform an MCMC analysis over back-
ground cosmological parameters, the bias, and the parameter a in each redshift slice,
to obtain new estimates of various parameters.

We repeat steps 3, 4, and 5 until the new bias values in each redshift slice lie within one
sigma of the previous iteration.

3.2 Estimating the covariance matrix

In the above discussion we have not yet defined the errors on the angular auto-power spectra
and the full covariance matrix between different redshift slices that will be needed for the
MCMC fitting. In the absence of a complete understanding of mock systematic fields, it
is unlikely that we can obtain optimal errors on systematic corrections within the scope
of this analysis. We therefore adopt a simplistic model to estimate the covariance of the
systematics-corrected power spectra, similar to [15, 19], which we describe below.

Assuming Gaussianity of the fields involved, the covariance matrix has a simple structure
of non-zero diagonal elements, with entries for multipoles `α = `β for redshift slices α and β.
These covariances are given by

σ2
(
Cα,α`

)
=

2

fsky(2`+ 1)

(
Cα,α`,smooth +Nshot,α

)2
, (3.7)

σ2
(
Cα,α` Cβ,β`

)
=

2

fsky(2`+ 1)

(
Cα,β`,smooth

)2
, (3.8)

where σ2
(
Cα,α`

)
is the (diagonal) variance in the auto-power of redshift slice α and σ2

(
Cα,α`

Cβ,β`
)

is the (diagonal) cross-covariance between redshift slices α and β. Note that the cross-
covariance between two redshift slices is different from the variance in the cross-power between
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the two redshift slices, which is given by eqs. (4.1) and (4.2) in the next section. Here fsky
is the fraction of the sky observed and the shot noise is given by Nshot = fsky × 4π/Nsample,
where Nsample is the effective number of objects observed (e.g. galaxies, after weighting by
the probability that an observed object is a galaxy). The shot noise term only contributes
to the variance of the auto-power spectra. The subscript ‘smooth’ denotes a smooth fit to
the observed auto- or cross-power spectra. Also, the above equations assume a unit width
for each ` bin, i.e. ∆` = 1.

We modify the above set of equations by adding the correctional power due to system-
atics [15, 19],

σ2
(
Cα,α`

)
= a2fac

2

fsky
∑`max−1

`=`min
(2`+ 1)

(√(
Cα,α`,smooth

)2
+
(

∆Cα,α`

)2
+Nshot,α

)2

, (3.9)

σ2
(
Cα,α` Cβ,β`

)
= a2fac

2

fsky
∑`max−1

`=`min
(2`+ 1)

((
Cα,β`,smooth

)2
+
(

∆Cα,β`

)2)
, (3.10)

where ∆Cα,α` =
∑Nsys

i,j=1 ε
α
i (`)εαj (`)〈δi(`,m)δj(`,m)〉 and ∆Cα,β` =

∑Nsys

i,j=1 ε
α
i (`)εβj (`)〈δi(`,m)

δj(`,m)〉. We have also taken into account the fact that ∆` 6= 1, with the total number
of modes in each ` bin coming from the sum of modes in `min ≤ ` < `max. Further, we
have boosted the diagonal error with an empirical factor of afac to account for the fact that
the Gaussian approximation is not perfect and neighboring ` bins contribute to the diagonal
error as well. For example, in our LRG analysis in section 5 we choose afac = 1.1 [15].

Finally, we calculate the off-diagonal elements of the covariance matrix by preserving
the structure of the OQE covariance matrix,

σ2
(
Cα,α`,`′

)
=

σ2
(
C`,`′,OQE

)√
σ2
(
C`,OQE

)
σ2
(
C`′,OQE

) √σ2(Cα,α`

)
σ2
(
Cβ,β`′

)
, (3.11)

σ2
(
Cα,α` Cβ,β`′

)
=

σ2
(
C`,`′,OQE

)√
σ2
(
C`,OQE

)
σ2
(
C`′,OQE

) √σ2(Cα,α` Cβ,β`
)
σ2
(
Cα,α`′ Cβ,β`′

)
. (3.12)

This is a valid approximation since all redshift slices usually have similar OQE covariance
structures (arising from the use of a common mask) [15, 16]. One can then choose any redshift
slice to generate the ratio in the above equations.

We will now apply the method described here to simulated (section 4) and real (section
5) angular power spectra in the following sections.

4 Simulation

In this section we generate mock angular power spectra contaminated with known and un-
known systematics in two redshift slices, and obtain estimates of the bias by discarding
heavily contaminated bins. We choose redshift slices 0.50 ≤ z ≤ 0.55 and 0.55 ≤ z ≤ 0.60,
labeled LRG2s and LRG3s (‘s’ standing for ‘simulation’), with redshift distributions identi-
cal to those for LRGs in SDSS-III DR8 [15, 19]. We generate auto- and cross-power spectra
using the equations in section 2.1 with bias values of 2.0 and 2.2 and the non-linear fitting
parameter a set to zero in the two redshift slices, assuming a WMAP9 + SN ΛCDM cos-
mology. We then add mock systematic fields for stellar contamination, sky brightness, and
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seeing variations to both, the auto- and cross-power spectra. In order to generate the mock
systematic fields, we use actual maps of these systematics and their cross-correlations with
the observed galaxy density given in [15] and slightly exaggerate the effect of stars. Having
maps of the systematics and their cross-correlations with galaxies one can calculate the var-
ious εαi (`) coefficients using eq. (3.2), with uα(`) = 0, and add in these systematics to obtain
the observed angular power spectra from the theoretical power spectra. We subsequently
correct for only sky brightness and seeing variations, leaving stars as an unknown systematic
in the density fields.5

In order to correct for known systematics (i.e. sky and seeing) we first solve eq. (3.2) for
the weights εαi (`) in each ` bin, under the assumption that uα(`) = 0. We then use eq. (3.4)
to obtain the corrected auto-power spectra in each redshift slice. In fig. 1 we present the
auto- and cross-power spectra in the two redshift slices before and after adding systematics.
We also show the power spectra corrected for known systematics for comparison. Eqs. (3.9)
- (3.12) further provide the full covariance matrix for the MCMC analysis, where for the
smooth power spectra we use the observed spectra that include all three systematics and for
the off-diagonal elements we use the structure of the OQE covariance matrix from one of the
redshift slices in DR8.

To compute the errors in the cross-power (which we do not need in our analysis but we
do show in fig. 1), we use a modified version of the following equation that assumes Gaussian
errors (see, e.g., [66, 67]),

σ2
(
Cα,β`

)
=

1

fsky(2`+ 1)

((
Cα,β`,smooth

)2
+
(
Cα,α`,smooth +Nshot,α

)(
Cβ,β`,smooth +Nshot,β

))
, (4.1)

to include the correctional power due to systematics,

σ2
(
Cα,β`

)
= a2fac

1

fsky
∑`max−1

`=`min
(2`+ 1)

((
Cα,β`,smooth

)2
+
(

∆Cα,β`

)2
+

(√(
Cα,α`,smooth

)2
+
(

∆Cα,α`

)2
+Nshot,α

)

×

(√(
Cβ,β`,smooth

)2
+
(

∆Cβ,β`

)2
+Nshot,β

))
. (4.2)

This is the variance in the cross-power between redshift slices α and β, which includes an
extra contribution from the auto-power, since the auto-power effectively acts like an extra
source of noise when computing the error in the cross-power.

Before we proceed with the MCMC analysis, in fig. 2 we show the amount of unknown
contamination (i.e. the contamination due to stars) in the auto- and cross-power spectra
relative to the errors in the observed angular power spectrum in the two redshift slices. The
quantity Uα,β` defined in eq. (3.3) is simply calculated as the difference between the corrected
data points and the corresponding theoretical angular power spectra in fig. 1. Then fig. 2
shows that in redshift slice LRG2s, bins at ` = 8.5, 16.5, 55, 75, 85, 105 are contaminated

5We checked that on correcting for all three systematics we reproduce the theoretical power spectra as
expected.
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Figure 1. The auto- (top panels) and cross-power (bottom panel) spectra in simulated data for
two redshift slices. The solid black curves are the original theoretical power spectra for bias values
of 2.0 and 2.2 in redshift slices LRG2s and LRG3s, respectively. Red open circles with dashed (1σ)
error bars are mock observed data points in which we have added three systematics, while blue filled
circles with solid (1σ) error bars are data points corrected for only two systematics. The corrected

cross-power is calculated analogous to the auto-power, using eq. (3.3) with Uα,β` = 0.

at more than one sigma, while in redshift slice LRG3s, bins at ` = 16.5, 35, 65 are similarly
contaminated. The cross-power, however, is expected to pick up contaminations in bins at
` = 16.5, 55. We will see below that this is in fact what we find in the MCMC analysis.

Now we perform the MCMC analysis described in section 2.3. We choose a low-` cutoff
for the angular power spectrum in each redshift slice at `min = 30 since we expect lower
multipoles to mostly be dominated by systematics. We also choose a high-` cutoff, `max,
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Figure 2. The absolute value of the unknown contamination Uα,β` defined in eq. (3.3) compared
to the errors in the observed angular power spectra in the two redshift slices for simulated LRGs.
Squares show the contamination in the auto-power spectra, i.e. Abs[Uα,α` ]/σ

(
Cα,α`,obs

)
while circles

show the contamination in the cross-power. The solid line is the 1σ-line.

corresponding to k = 0.1h Mpc−1 (determined using ΛCDM cosmology, see table 1) to avoid
the strongly non-linear regime of the matter power spectrum. In addition to the bias and
non-linear fitting parameter in each redshift slice, we also vary over the standard cosmo-
logical parameters

{
Ωbh

2,ΩDMh
2, θ, τ, ns, logAs, ASZ

}
. Here Ωbh

2 is the physical baryon
density, ΩDMh

2 is the physical dark matter density, θ is the ratio of the sound horizon to
the angular diameter distance at decoupling, τ is the reionization optical depth, ns is the
scalar spectral index, As is the amplitude of the primordial scalar curvature perturbations at
k = 0.05 Mpc−1, and ASZ represents a Sunyaev-Zeldovich template normalization. We use
flat priors for all parameters. This analysis yields the bias and a parameters shown in the
sixth and seventh columns of table 1.

Label zmid Input Input lmax b1 106a b1 106a
b1 a (1st it.) (1st it.)

LRG2s 0.525 2.0 0 140 1.91+0.09
−0.09 2.97+2.71

−2.72 2.03+0.08
−0.09 −0.04+2.97

−2.92

LRG3s 0.575 2.2 0 151 2.11+0.10
−0.09 2.02+2.33

−2.36 2.15+0.09
−0.10 1.31+2.44

−2.44

Table 1. The best-fit Gaussian bias and non-linear fitting parameter (with 1σ errors) in the two
simulated redshift slices for LRGs, using WMAP9 + SN + simulated LRG data. In the sixth and
seventh columns we have used all available ` bins in 30 ≤ ` ≤ `max, while in the next two columns we
have used only those bins in 10 ≤ ` ≤ `max that satisfy a 1σ-cut on Uα,β` .

Next we use the best-fit bias and a parameters to obtain the theoretical cross-power
spectrum between the two redshift slices. As noted earlier, we calculate the cross-redshift
distribution needed here as an overlap of the distribution in the two slices. We also add√
|aα| |aβ| to the theoretical cross-power, to take into account any non-linear contributions
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in the region with which we are concerned. Comparing this ‘true’ power spectrum with the
observed cross-power and using the weights εαi (`) obtained earlier, we calculate Uα,β` using

eq. (3.3) in each ` bin. Finally we determine the unknown contamination coefficient Uα,β`

using eq. (3.5). We show the absolute value of this quantity with the 1σ-cut that we apply in
fig. 3 and note that bins with a contamination greater than one sigma do indeed correspond
to those shown earlier in the cross-power in fig. 2.

101 102

0.0

0.5

{
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b

s
@U

{Α
,Β

D
LRG2s ´ LRG3s

Figure 3. The absolute value of the unknown contamination coefficient Uα,β` defined in eq. (3.5) for
simulated LRGs (filled circles). The dotted line shows the absolute value of the 1σ-cut — we drop all

bins that lie above this cut. The upturn in the value of Uα,β` at high ` comes from the cross-power
being dominated by the non-linear fitting parameters on these scales.

We now drop all ` bins in the auto-power of each of the two redshift slices, for which
the unknown contamination coefficient lies outside the 1σ-cut. Using only the remaining
bins in 10 ≤ ` ≤ `max and the corresponding rows and columns of the full covariance matrix
obtained earlier, we perform an MCMC analysis on the standard cosmological parameters,
the bias, and the a parameter in each redshift slice. This exercise yields the bias and a
values denoted as ‘1st it.’ (First iteration) in table 1. The bias in the redshift slice LRG2s
lies slightly outside the one sigma bound of the previous estimate. When we used these new
estimates of the bias to determine which bins to drop, however, we ended up with the same
bins in 10 ≤ ` ≤ `max as the first iteration. These values of the bias are therefore the final
values obtained on applying our method. As one can see, estimates of the bias are now closer
to the original values of 2.0 and 2.2. We also find that this fit leads to a reduction in χ2 and
thus represents an improved fit to the data.

In fig. 4 we present the angular power spectrum corrected for known systematics and
mark the bins that we drop in each redshift slice. We also show theoretical curves obtained
using best-fit values of the bias and the a parameter before and after dropping bins. According
to the method presented here we exclude bins from each of the two redshift slices that have
a significantly contaminated cross-correlation, as we do not know which of the two redshift
slices is responsible for this contamination. For this reason, there are some ` bins in the
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auto-power spectra of each redshift slice that may not appear to be contaminated but are
still dropped.
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Figure 4. The angular power spectrum in the two simulated redshift slices of LRGs. Open circles
with (1σ) error bars represent data points that are dropped due to large unknown systematics, as
determined using the cross-power spectra. Filled circles, on the other hand, are data points that are
not dominated with unknown systematics. The vertical dotted line shows `max. The dashed curve
is the theoretical power spectrum obtained using the best-fit bias parameters that correspond to the
MCMC analysis which uses all data points in 30 ≤ ` ≤ `max. The solid curve represents the MCMC
analysis which uses only filled circles in 10 ≤ ` ≤ `max. In both theoretical curves we have added in
the corresponding best-fit a parameter to all C`s; this causes the upturn at large `.

It is important to note that the theoretically calculated ‘true’ cross-power spectrum
depends on the assumed background cosmological model. There is a possibility therefore
that the bins that are discarded could be showing a real cosmological signal of interest. In
order to assess this effect, we repeat the analysis of this section with a different background
cosmology. In particular, we consider the case of non-zero primordial non-Gaussianity. As
was first reported in [56], the halo bias includes a scale-dependent term given by

∆b(M,k, z, fNL) = 3fNL[b1(M, z)− p]δc
ΩmH

2
0

k2T (k)D(z)
(4.3)

in the presence of primordial (local) non-Gaussianity, usually parameterized by the parameter
fNL. Here, δc ≈ 1.686 denotes the critical density for spherical collapse, Ωm is the present day
matter density, H0 is the Hubble constant, T (k) is the matter transfer function normalized
to unity as k → 0, and D(z) is the linear growth function normalized to (1 + z)−1 in the
matter-dominated era. The parameter p ranges from unity for objects that populate all halos
equally to 1.6 for objects that populate only recently merged halos [58]. For LRGs we can
set p to unity. We generate auto- and cross-power spectra as before, assuming a WMAP9
+ SN ΛCDM cosmology, but in addition setting fNL = 25. We then add in three mock
systematic fields and correct for two of them, leaving the third as an unknown systematic.
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We subsequently perform an MCMC analysis assuming that fNL = 0, expecting to find more
low-` bins to be contaminated with unknown systematics, since the effect of non-zero fNL

is more predominant on large scales. Since the effect of systematics is large compared to
the actual cosmological signal of a small non-zero fNL, however, we find results very similar
to what we found earlier, with the method dropping the same bins as before. We do find,
however, slightly higher estimates of the Gaussian bias since fNL > 0 increases the power on
large scales. With more precise data in the future it may be useful to implement the method
presented here for each parameter space being explored, for instance including fNL in the
MCMC analysis that determines which bins to discard and using the resulting best-fit value
of fNL to calculate the true cross-power.

5 A case study: SDSS-III LRGs

Let us now apply the method discussed in sections 3 and 4 to actual data from SDSS-I, II
and III [68–71]. We use LRGs from the SDSS-III DR8 sample described in [15, 19]. We
refer the reader to these papers for details and highlight some of the main properties of the
sample here. The data set spans ∼ 11, 000 square degrees of the sky and probes a volume
of ∼ 3h−3 Gpc3. We focus on the approximately stellar mass-limited CMASS sample of
luminous galaxies, that follows the CMASS galaxy selection detailed in [72]. Photometric
redshifts and the probability that an object is a galaxy are obtained using a training sample
of 112,778 BOSS CMASS spectra. The final photometric redshift catalog consists of a total of
872,921 luminous galaxies in the redshift range 0.45 ≤ z ≤ 0.65, divided into four photometric
bins (labeled LRG1 through LRG4) — z = 0.45−0.50, 0.50−0.55, 0.55−0.60, and 0.60−0.65,
with the effective number of galaxies in each bin being 214971, 258736, 248895, and 150319,
respectively. The calculation of the angular power spectra in the four redshift bins uses the
OQE method outlined in section 2.2.

We first take the output of the OQE and correct for dominant known systematics,
which include stellar contamination, sky brightness, and seeing variations. The maps of
these systematics and their cross-correlations with the observed galaxy density field were
given in [15], so we will not repeat them here. As before, we correct for these systematics
assuming that there are no unknown systematics, and also obtain the full covariance matrix
that is used in the MCMC analysis.

We perform the MCMC analysis described in section 2.3, choosing a low-` cutoff for
the angular power spectrum in each redshift slice at `min = 30 and a high-` cutoff, `max,
corresponding to k = 0.1h Mpc−1 (see table 2). In addition to the bias and non-linear fitting
parameter in each redshift slice, we also vary over the standard cosmological parameters{

Ωbh
2,ΩDMh

2, θ, τ, ns, logAs, ASZ

}
. The resulting bias and a parameters obtained are given

in the fourth and fifth columns of table 2. Using the best-fit bias and a parameters we cal-
culate the theoretical cross-power spectra between the four redshift slices, adding

√
|aα| |aβ|

to the cross-power between consecutive redshift slices. Comparing these ‘true’ power spectra
with the observed cross-power and using the weights εαi (`) obtained earlier (under the as-
sumption of no unknown systematics), we calculate the unknown contamination coefficient

Uα,β` . We show the absolute value of this quantity along with the 3σ-cut that we apply in
fig. 5. We choose a more conservative 3σ-cut as we are now dealing with real data.

We now drop all ` bins in the auto-power of each redshift slice, whose unknown con-
tamination in the cross-power with some other redshift slice lies outside the corresponding
3σ-cut. Again, using only the remaining bins in 10 ≤ ` ≤ `max and the corresponding rows
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Label zmid lmax b1 106a b1 106a
(1st it.) (1st it.)

LRG1 0.475 128 1.89+0.09
−0.10 4.93+4.38

−4.27 1.96+0.14
−0.14 2.86+5.78

−5.79

LRG2 0.525 140 1.88+0.09
−0.10 6.32+2.90

−2.88 1.97+0.11
−0.10 3.83+3.32

−3.30

LRG3 0.575 151 2.16+0.10
−0.09 0.74+2.48

−2.45 2.09+0.12
−0.13 2.14+3.10

−3.08

LRG4 0.625 162 2.26+0.11
−0.11 1.40+2.31

−2.32 2.26+0.11
−0.12 1.44+2.35

−2.35

Table 2. The best-fit Gaussian bias and non-linear fitting parameter (with 1σ errors) in the four
redshift slices for LRGs, using WMAP9 + SN + DR8 (LRG) data. In the fourth and fifth columns
we have used all available ` bins in 30 ≤ ` ≤ `max, while in the next two columns we have used only
those bins in 10 ≤ ` ≤ `max that satisfy a 3σ-cut on Uα,β` .

and columns of the full covariance matrix obtained earlier, we perform an MCMC analysis on
the standard cosmological parameters, the bias, and the a parameter in each redshift slice.
This yields the bias and a values given in the last two columns of table 2. Values of the bias
lie within one sigma of the previous bias estimates, so these are the final values to use.

In fig. 6 we present the measured angular power spectrum in each redshift slice after
correcting for known systematics and mark the bins that are dropped based on the method
discussed above. We also display theoretical curves6 obtained using best-fit values for the
bias and a before and after dropping bins. In each redshift slice there are some bins that
do not appear to be contaminated but are still dropped as their cross-power with another
redshift slice is significantly contaminated.

To see how this method changes the estimates of other cosmological parameters, we
examine a specific example of primordial non-Gaussianity. We add the term given in eq.
(4.3) to the bias b1 and introduce an extra parameter fNL to the MCMC analysis. We do
not include fNL in the MCMC method to determine which bins to drop, but rather only
include it as a parameter to fit after determining which bins to drop assuming fNL = 0. In
order to constrain fNL we set the (Gaussian) bias b1 and the non-linear fitting parameter a
to their corresponding best-fit values in each redshift slice, and perform an MCMC analysis
over the standard cosmological parameters and fNL. Using all ` bins in 30 ≤ ` ≤ `max we
find that fNL = −5+62

−62 (1σ error), using instead all bins in 10 ≤ ` ≤ `max we obtain a tighter

constraint of fNL = −77+47
−46 (1σ error), and finally using only those bins in 10 ≤ ` ≤ `max that

satisfy the 3σ-cut we obtain fNL = −17+68
−68 (1σ error). For data at higher redshifts (such

as quasars) we expect the variation in parameter estimation to be even more significant,
and therefore propose that one should use a method such as that discussed in this paper to
exclude significantly contaminated bins in photometric LSS surveys (for instance, see [16]).

6 Discussion

Photometric surveys are currently limited by systematics. In order to correctly use data from
current and upcoming surveys, it is important to understand and account for various sources
of contamination that affect photometric samples. This issue has motivated works such as [21,
22, 24]. In [21], the authors demonstrated that auto-correlations of quasars in the SDSS DR6
sample [73, 74] are unfit to constrain primordial non-Gaussianity. They constructed templates

6The theoretical curves shown in fig. 6 differ from those used in calculating the likelihood by the effect of
the survey window function.
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Figure 5. The absolute value of the unknown contamination coefficient Uα,β` defined in eq. (3.5) for
SDSS-III DR8 LRGs (filled circles). The dotted line shows the absolute value of the 3σ-cut — we
drop all bins in the corresponding auto-power spectra that lie above this cut. The points that lie
above the solid line have Abs

[
Uα,β`

]
> 1.
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Figure 6. The angular power spectrum in the four redshift slices of LRGs. Open circles with (1σ)
error bars represent data points that are dropped due to large unknown systematics, as determined
using the cross-power spectra. Filled circles, on the other hand, are data points that are not dominated
with unknown systematics. The vertical dotted line shows `max. The dashed curve is the theoretical
power spectrum obtained using the best-fit bias parameters that correspond to the MCMC analysis
which uses all data points in 30 ≤ ` ≤ `max. The solid curve represents the MCMC analysis which
uses only filled circles in 10 ≤ ` ≤ `max. In both theoretical curves we have added in the corresponding
best-fit non-linear fitting parameter a to all C`s; this causes the upturn at large `.

for various potential systematic effects and mode-projected them from the angular cross-
power spectra. Although this improved the significance of the cross-correlation measurement,
they concluded that other systematics are still contaminating the SDSS photometric quasar
sample. In [24], the authors used improved sky masks and mode projection to further reduce
contamination levels, and in [22], the authors obtained improved cosmological parameter
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estimates by using cross-correlations between different surveys.
In this paper we have adopted a different approach and have developed a method to

exclude bins in the angular power spectrum that are significantly contaminated by unknown
systematics. For this purpose, we use cross-correlations between different redshift slices and
define an unknown contamination parameter to estimate the contribution from unknown
systematics in the auto-power spectra. This allows one to selectively drop bins that lie
outside a specified contamination tolerance. We apply our method on simulated data for
LRGs in the SDSS to demonstrate that it does improve estimates of the bias in each redshift
slice. We further apply the method to real LRGs in the SDSS-III DR8 sample as a case
study. This also allows a comparison, as an example of cosmological parameter estimation,
of constraints on primordial non-Gaussianity before and after applying our method.

In the analysis presented in this paper, we assume a certain model for non-linear struc-
ture formation — in particular, we use the HaloFit prescription and model non-linearities
with an extra a parameter. Although we cut the analysis at k = 0.1h Mpc−1, we expect some
amount of unknown contamination to be attributed to a lack of theoretical understanding of
the matter power spectrum in the non-linear regime. We would also like to emphasize that
an imperfect modeling of known systematic fields, for instance a more complex relationship
compared to the simple linear one we use between systematics and the observed density, is
also expected to contribute to unknown systematics. Further, as discussed in section 4 the
true cross-power depends on the assumed background cosmological model; one could thus
implement the method presented here for each cosmological parameter space being studied.

It is also worthwhile to note that the method discussed here provides an upper estimate
of the errors since it drops bins from both redshift slices whose cross-correlation is significantly
contaminated. It may be possible to use different combinations of the auto- and cross-
power spectra and additionally cross-correlations between photometric and spectroscopic
measurements to derive less aggressive algorithms. Further, it would be useful to generalize
such a method for spectroscopic surveys. These issues will be dealt with in future work.
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