437 research outputs found

    Fair Is Fair—Reshaping Alaska’s Unfair Trade Practices and Consumer Protection Act

    Get PDF
    Few fields of law impact as wide a swath of population as consumer protection law. Alaska adopted its consumer protection statute, the Unfair Trade Practices and Consumer Protection Act (UTPCPA), amid a national movement to strengthen consumer protection laws. The UTPCPA uses broad language to encompass a wide range of conduct. However, creative pleading and recent applications of the UTPCPA have expanded the law in ways that threaten Alaska businesses even in the absence of culpable conduct. This Note reviews the history of consumer protection, Alaska’s UTPCPA, and the incentives leading to an expanding application of the UTPCPA. The Note concludes by proposing potential legislative solutions to rein in abuse of the Act

    Policy options for including LULUCF in the EU reduction commitment and policy instruments for increasing GHG mitigation efforts in the LULUCF and agriculture sectors

    Get PDF
    Land use, land-use change and forestry (LULUCF) is an inventory sector defined by the Intergovern-mental Panel on Climate Change (IPCC) that covers anthropogenic emissions and removals of GHGs resulting from changes in terrestrial carbon stocks. The EU has committed unilaterally to reduce its overall greenhouse gas (GHG) emissions to 20 % be-low 1990 levels by 2020, and to 30 % below 1990 levels if conditions are right

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Scaling of fracture systems in geological media

    Get PDF

    From discrete to continuous evolution models: a unifying approach to drift-diffusion and replicator dynamics

    Full text link
    We study the large population limit of the Moran process, assuming weak-selection, and for different scalings. Depending on the particular choice of scalings, we obtain a continuous model that may highlight the genetic-drift (neutral evolution) or natural selection; for one precise scaling, both effects are present. For the scalings that take the genetic-drift into account, the continuous model is given by a singular diffusion equation, together with two conservation laws that are already present at the discrete level. For scalings that take into account only natural selection, we obtain a hyperbolic singular equation that embeds the Replicator Dynamics and satisfies only one conservation law. The derivation is made in two steps: a formal one, where the candidate limit model is obtained, and a rigorous one, where convergence of the probability density is proved. Additional results on the fixation probabilities are also presented.Comment: 18 pages, 3 figure

    Recombination facilitates neofunctionalization of duplicate genes via originalization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type) allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (P<sub>neo</sub>) of duplicate genes. In this article this hypothesis has been tested theoretically.</p> <p>Results</p> <p>Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge P<sub>neo</sub>.</p> <p>Conclusions</p> <p>Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, P<sub>neo </sub>cannot be expected to be small.</p

    No Evidence for Strong Recent Positive Selection Favoring the 7 Repeat Allele of VNTR in the DRD4 Gene

    Get PDF
    The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection

    No Evidence for Strong Recent Positive Selection Favoring the 7 Repeat Allele of VNTR in the DRD4 Gene

    Get PDF
    The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection
    corecore