11 research outputs found

    EOS789, a broad-spectrum inhibitor of phosphate transport, is safe with an indication of efficacy in a phase 1b randomized crossover trial in hemodialysis patients

    Get PDF
    The treatment of hyperphosphatemia remains challenging in patients receiving hemodialysis. This phase 1b study assessed safety and efficacy of EOS789, a novel pan-inhibitor of phosphate transport (NaPi-2b, PiT-1, PiT-2) on intestinal phosphate absorption in patients receiving intermittent hemodialysis therapy. Two cross-over, randomized order studies of identical design (ten patients each) compared daily EOS789 50 mg to placebo with meals and daily EOS789 100 mg vs EOS789 100 mg plus 1600 mg sevelamer with meals. Patients ate a controlled diet of 900 mg phosphate daily for two weeks and began EOS789 on day four. On day ten, a phosphate absorption testing protocol was performed during the intradialytic period. Intestinal fractional phosphate absorption was determined by kinetic modeling of serum data following oral and intravenous doses of 33Phosphate ( 33P). The results demonstrated no study drug related serious adverse events. Fractional phosphate absorption was 0.53 (95% confidence interval: 0.39,0.67) for placebo vs. 0.49 (0.35,0.63) for 50 mg EOS789; and 0.40 (0.29,0.50) for 100 mg EOS789 vs. 0.36 (0.26,0.47) for 100 mg EOS789 plus 1600 mg sevelamer (all not significantly different). The fractional phosphate absorption trended lower in six patients who completed both studies with EOS789 100 mg compared with placebo. Thus, in this phase 1b study, EOS789 was safe and well tolerated. Importantly, the use of 33P as a sensitive and direct measure of intestinal phosphate absorption allows specific testing of drug efficacy. The effectiveness of EOS789 needs to be evaluated in future phase 2 and phase 3 studies

    Calcium kinetics during bed rest with artificial gravity and exercise countermeasures

    No full text
    SUMMARY: We assessed the potential for countermeasures to lessen the loss of bone calcium during bed rest. Subjects ingested less calcium during bed rest, and with artificial gravity, they also absorbed less calcium. With exercise, they excreted less calcium. To retain bone during bed rest, calcium intake needs to be maintained. INTRODUCTION: This study aims to assess the potential for artificial gravity (AG) and exercise (EX) to mitigate loss of bone calcium during space flight. METHODS: We performed two studies: (1) a 21-day bed rest (BR) study with subjects receiving 1 h/day AG (n = 8) or no AG (n = 7) and (2) a 28-day BR study with 1 h/day resistance EX (n = 10) or no EX (n = 3). In both studies, stable isotopes of Ca were administered orally and intravenously, at baseline and after 10 days of BR, and blood, urine, and feces were sampled for up to 14 days post dosing. Tracers were measured using thermal ionization mass spectrometry. Data were analyzed by compartmental modeling. RESULTS: Less Ca was absorbed during BR, resulting in lower Ca balance in BR+AG (-6.04 ± 3.38 mmol/day, P = 0.023). However, Ca balance did not change with BR+EX, even though absorbed Ca decreased and urinary Ca excretion increased, because endogenous excretion decreased, and there was a trend for increased bone deposition (P = 0.06). Urinary N-telopeptide excretion increased in controls during BR, but not in the EX group. Markers of bone formation were not different between treatment groups for either study. Ca intake decreased during BR (by 5.4 mmol/day in the AG study and 2.8 mmol/day in the EX study), resulting in lower absorbed Ca. CONCLUSIONS: During BR (or space flight), Ca intake needs to be maintained or even increased with countermeasures such as exercise, to enable maintenance of bone Ca

    Modeling Calcium Loss from Bones During Space Flight

    No full text
    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth

    Insulin-like growth factor-1 increases bone calcium accumulation only during rapid growth in female rats.

    No full text
    Calcium retention varies with developmental state, which may be partially under the control of insulin-like growth factor 1 (IGF-1). IGF-1 levels can be manipulated through dietary and therapeutic interventions. We investigated the relationship between IGF-1 endogenous production and calcium utilization and bone accretion during growth as well as the effects of IGF-1 treatment on calcium utilization during rapid and slowed growth in intact female Sprague-Dawley rats. In 33 rats killed at 11 time points (n = 3 each) from age 4 to 24 wk, femoral and vertebral bone mass were paralleled by plasma IGF-1 up to 9 wk. Fractional calcium absorption was maximal at 9 wk, reduced by one-half at 12 wk, and there was no further change at 20 wk. From this study, we selected 2 stages of growth, rapid and slow, for a subsequent intervention study. A 4-wk intervention was initiated at 6 or 8 wk when rats (n = 15/group) received either continuous rhIGF-1/IGF binding protein 3 (IGFBP3) infusion (0.3 mg/d) or vehicle (control) by osmotic mini-pumps. In rapidly growing IGF-1/IGFBP3-treated rats compared to controls, but not in slowly growing treated compared to control rats, IGF-1 treatment increased (P \u3c 0.05) calcium absorption (35 vs. 21%), bone calcium balance (0.55 vs. 0.3 mmol/d), and femoral calcium content (31 vs. 24% of dry weight). Exogenous IGF-1/IGFBP3 treatment increased calcium accretion during rapid growth, but rats past rapid growth were no longer as sensitive to this dose of IGF-1/IGFBP3. Thus, interventions designed to improve bone mass through increased IGF-1 will have the greatest impact during rapid growth
    corecore