191 research outputs found

    Homogeneous bilayer graphene film based flexible transparent conductor

    Full text link
    Graphene is considered a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 {\Omega}_{\square} at a transmittance of 83%. In addition, bilayer graphene films transferred onto plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.Comment: Published in Nanoscale, Nov. 2011 : http://www.rsc.org/nanoscal

    High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension

    Get PDF
    In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst

    Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective

    Get PDF
    The adsorption of choline benzoate ([CH][BE]) ionic liquid (IL) on the surface of different hexagonal nanosheets has been studied using Density Functional Theory (DFT) methods. For this, the interaction mechanism, binding energies and electronic structure of [CH][BE] ionic liquid on four types of nanosheets, i.e., graphene, silicene, germanene and boron-nitride, were estimated and compared. The adsorption of [CH][BE] ionic liquid on different nanosheets is mainly featured by van der Waals forces, leading to strong benzoate ion–surface π-stacking. Likewise, there is also an important charge transfer from the anion to the sheet. The electronic structure analysis shows that Si- and Ge-based sheets lead to the largest changes in the HOMO and LUMO levels of choline benzoate. This paper provides new insights into the capability of DFT methods to provide useful information about the adsorption of ionic liquids on nanosheets and how ionic liquid features could be tuned through the adsorption on the suitable nanosheet.Ministerio de Economı´a y Competitividad (Spain, project CTQ2013-40476-R) and Junta de Castilla y León (Spain, project BU324U14)

    Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition

    Get PDF
    We report a novel approach to synthesize chemical vapor deposition-grown three-dimensional graphene nano-networks (3D-GNs) that can be mass produced with large-area coverage. Annealing of a PVA/iron precursor under a hydrogen environment, infiltrated into 3D-assembled-colloidal silicas reduces iron ions and generates few-layer graphene by precipitation of carbon on the iron surface. The 3D-GN can be grown on any electronic device-compatible substrate, such as Al2O3, Si, GaN, or Quartz. The conductivity and surface area of a 3D-GN are 52 S/cm and 1,025 m(2)/g, respectively, which are much better than the previously reported values. Furthermore, electrochemical double-layer capacitors based on the 3D-GN have superior supercapacitor performance with a specific capacitance of 245 F/g and 96.5% retention after 6,000 cycles due to the outstanding conductivity and large surface area. The excellent performance of the 3D-GN as an electrode for supercapacitors suggests the great potential of interconnected graphene networks in nano-electronic devices and energy-related materials.open15

    Structural and Electronic Decoupling of C_(60) from Epitaxial Graphene on SiC

    Get PDF
    We have investigated the initial stages of growth and the electronic structure of C_(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C_(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C_(60) superlattice. We measure a highest occupied molecular orbital–lowest unoccupied molecular orbital gap of ~ 3.5 eV for the C_(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C_(60) and substrate-induced screening as compared to C_(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates

    Oh the Places You'll Go, with Graphene: A Chemists Exploration of Two Dimensions

    No full text
    Graphene, the first two-dimensional crystal ever studied, has made such an impact in a myriad of fields ranging from physical science to engineering that its discovery earned Nobel recognition in 2010. Although it was initially lauded as the answer to the Moore's law limitation of silicon electronics, what really captivated scientists was the fact that it opened countless avenues of exploration. From a synthetic chemists perspective, it became imperative to find a more sensible way to isolate graphene if it were ever to become practical for industrial use. This thesis demonstrates several fascinating routes to synthesize graphene, such as: top down methods involving the solution processing of graphitic materials through redox chemistry and bottom-up approaches mainly using chemical vapor deposition (CVD). In addition, several device architectures were developed to exploit intrinsic properties of the derived graphene. These applications include: transparent electrodes, Flash memory devices and bio-electrodes for cell stimulation

    Structure and high-temperature thermoelectric properties of SrAl_2Si_2

    No full text
    Single crystals of SrAl_2Si_2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl_2Si_2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P–3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at 1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of 7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from −78 μV K^(−1) at room temperature to −34 μV K^(−1) at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm^(−1) K, and contributes to the overall low zT for this compound
    corecore