142 research outputs found

    Fixational Eye Movements in the Earliest Stage of Metazoan Evolution

    Get PDF
    All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur

    Prospek Jawawut (Pennisetum Spp. ) sebagai Tanaman Pangan Serealia Alternatif

    Get PDF
    Untuk meningkatkan ketahanan pangan dan diversifikasi pangan, Indonesia dapatmemanfaatkan lahan kering yang cukup luas jumlahnya. Jawawut (Pennisetumspp.) memiliki potensi yang sangat baik sebagai tanaman pangan alternatifditinjau dari aspek kandungan gizi, dan kemampuan tumbuhnya di daerahberiklim kering. Dilihat dari segi kandungan gizinya, jawawut berpotensi sebagaisumber energi, protein, kalsium, vitamin B1, riboflavin (vitamin B2), sedangkannutrisi lainnya setara dengan beras. Potensi hasil yang dapat dicapai di Indonesiaadalah 4 ton per ha pada kondisi agroekologi yang marginal, dimanapertumbuhan serealia lainnya kurang berhasil. Jawawut dipanen sebagai tanamanpangan semusim

    The giant eyes of giant squid are indeed unexpectedly large, but not if used for spotting sperm whales

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 13 (2013): 187, doi:10.1186/1471-2148-13-187.We recently reported (Curr Biol 22:683–688, 2012) that the eyes of giant and colossal squid can grow to three times the diameter of the eyes of any other animal, including large fishes and whales. As an explanation to this extreme absolute eye size, we developed a theory for visual performance in aquatic habitats, leading to the conclusion that the huge eyes of giant and colossal squid are uniquely suited for detection of sperm whales, which are important squid-predators in the depths where these squid live. A paper in this journal by Schmitz et al. (BMC Evol Biol 13:45, 2013) refutes our conclusions on the basis of two claims: (1) using allometric data they argue that the eyes of giant and colossal squid are not unexpectedly large for the size of the squid, and (2) a revision of the values used for modelling indicates that large eyes are not better for detection of approaching sperm whales than they are for any other task. We agree with Schmitz et al. that their revised values for intensity and abundance of planktonic bioluminescence may be more realistic, or at least more appropriately conservative, but argue that their conclusions are incorrect because they have not considered some of the main arguments put forward in our paper. We also present new modelling to demonstrate that our conclusions remain robust, even with the revised input values suggested by Schmitz et al

    Auditory opportunity and visual constraint enabled the evolution of echolocation in bats

    Get PDF
    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar

    Ocular and Extraocular Expression of Opsins in the Rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa)

    Get PDF
    A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity

    Light scattering by selected zooplankton from the Gulf of Aqaba

    Get PDF
    Light scattering by zooplankton was investigated as a major factor undermining transparency camouflage in these pelagic animals. Zooplankton of differing transparencies – including the hyperiid amphipod Anchylomera blossevillei, an unknown gammarid amphipod species, the brine shrimp Artemia salina, the euphausiid shrimp Euphausia diomedeae, the isopod Gnathia sp., the copepods Pontella karachiensis, Rhincalanus sp. and Sapphirina sp., the chaetognath Sagitta elegans and an enteropneust tornaria larva – were illuminated dorsally with white light (400–700 nm). Spectral measurements of direct transmittance as well as relative scattered radiances at angles of 30°, 90°, 150° and 180° from the light source were taken. The animals sampled had transparencies between 1.5% and 75%. For all species, the highest recorded relative scattered radiance was at 30°, with radiances reaching 38% of the incident radiance for the amphipod A. blossevillei. Scattering patterns were also found to be species-specific for most animals. Relative scattered radiances were used to estimate sighting distances at different depths. These calculations predict that all of the examined zooplankton are brighter than the background radiance when viewed horizontally, or from diagonally above or below at shallow depths. Thus, in contrast to greater depths, the best strategy for detecting transparent zooplankton in the epipelagic environment may be to search for them from above while looking diagonally downwards, looking horizontally or looking from below diagonally upwards. Looking directly upwards proved to be more beneficial than the other viewing angles only when the viewed animal was at depths greater than 40 m

    The Dung Beetle Dance: An Orientation Behaviour?

    Get PDF
    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Toward A Brain-Based Theory of Beauty

    Get PDF
    We wanted to learn whether activity in the same area(s) of the brain correlate with the experience of beauty derived from different sources. 21 subjects took part in a brain-scanning experiment using functional magnetic resonance imaging. Prior to the experiment, they viewed pictures of paintings and listened to musical excerpts, both of which they rated on a scale of 1-9, with 9 being the most beautiful. This allowed us to select three sets of stimuli-beautiful, indifferent and ugly-which subjects viewed and heard in the scanner, and rated at the end of each presentation. The results of a conjunction analysis of brain activity showed that, of the several areas that were active with each type of stimulus, only one cortical area, located in the medial orbito-frontal cortex (mOFC), was active during the experience of musical and visual beauty, with the activity produced by the experience of beauty derived from either source overlapping almost completely within it. The strength of activation in this part of the mOFC was proportional to the strength of the declared intensity of the experience of beauty. We conclude that, as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources-musical and visual-and probably by other sources as well. This has led us to formulate a brain-based theory of beauty

    Effects of Place of Articulation Changes on Auditory Neural Activity: A Magnetoencephalography Study

    Get PDF
    In casual speech, phonemic segments often assimilate such that they adopt features from adjacent segments, a typical feature being their place of articulation within the vocal tract (e.g., labial, coronal, velar). Place assimilation (e.g., from coronal /n/ to labial /m/: rainbow→*raimbow) alters the surface form of words. Listeners' ability to perceptually compensate for such changes seems to depend on the phonemic context, on whether the adjacent segment (e.g., the /b/ in “rainbow”) invites the particular change. Also, some assimilations occur frequently (e.g., /n/→/m/), others are rare (e.g., /m/→/n/). We investigated the effects of place assimilation, its contextual dependency, and its frequency on the strength of auditory evoked mismatch negativity (MMN) responses, using pseudowords. Results from magnetoencephalography (MEG) revealed that the MMN was modulated both by the frequency and contextual appropriateness of assimilations
    corecore