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Abstract

All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual
scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational
eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their
eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual
system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear
division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we
show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia
cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest
metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the
rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing
in the central nervous system to remove image blur.
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Introduction

All sensory systems desensitise due to receptor adaptation.

Visual systems are no different and since photoadaptation occurs

at the cellular level of photoreceptors [1–4] it is an unavoidable

feature in metazoan vision. Thus, all examined photoreceptors

adapt to constant visual stimuli [5], and counterstrategies are

necessary to prevent image fading or blindness. The best known

mechanism to avoid adaptation is the fixational eye movements in

mammals (tremor, drift and microsaccades), which continuously

refocus and refresh the retinal image [6–8]. The movements are

generated by an oculomotor system and since they have a blurring

effect on the retinal image, additional neural specialisations in

post-processing pathways have evolved to eliminate the periods of

movement [8]. These mechanisms are very powerful, but also very

costly in both energy and neural capacity, and thus, not available

for animals with less elaborate processing capabilities.

Cnidarians were the first of the extant metazoan phyla to

develop a nervous system which is therefore considered close to the

evolutionary origin of all nervous systems [9]. Within Cnidarians,

cubozoans (box jellyfish) have the most elaborate visual system

with 24 eyes located on four sensory structures, called rhopalia

[10] (Figure 1). In addition to four pigment cup eyes (two pit eyes

and two slit eyes), each rhopalium carries two camera-type eyes,

morphologically similar to vertebrate eyes, comprising spherical

lenses with graded refractive indices. Contrary to the majority of

invertebrates, vision in box jellyfish is mediated by ciliated

photoreceptors [11], a type normally associated with vertebrate

animals. Further, the signal transduction in box jellyfish photore-

ceptors is based on an opsin-G-protein cascade with a cyclic

nucleotide second messenger [12] as in all known ciliated

photoreceptors [2]. The strong resemblances to the vertebrate

visual system, and their limited nervous system, make box jellyfish

ideal models for basic visual information processing.

The box jellyfish are able to extract the necessary information

from a complex visual scene that spans a complete sphere around

the animal. This is accomplished by special purpose eyes working

in concert each with the task of extracting very specific

information from the entire visual scene. Unfortunately, little is

known about the function of the pigment cup eyes [13,14]. In

contrast, the visual ecology of the lens eyes have been extensively

studied and one fundamental aspect, contributing to the lens eye

function, is that the rhopalium is suspended from the bell by a stalk

and weighted by a heavy calcium sulphate crystal [15] at its distal

end. This unique morphology ensures a constant vertical

orientation of the rhopalium, regardless of the orientation of the

animal [16]. This entails a clear division of the visual field: The

upper lens eye (ULE) of T. cystophora is directed upwards with a

visual field of just less than 100u [16] and the lower lens eye (LLE)

is directed downwards into the water with a visual field of 170u.
The box jellyfish must navigate a maze of prop roots in the

mangrove habitat and since colliding with a root could prove fatal.

It is therefore imperative that the animals can stay clear of

underwater hazards but at the same time locate light shafts

between the roots in which their phototactic prey is located [17].

The visual ecology of the LLE is not yet fully understood but it is

evident that this eye controls avoidance and feeding behaviour

[18]. Conversely, the function of the upper lens eye is much better

described; it gazes up on land through what is known as Snell’s
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window. A phenomenon produced by the difference in refractive

indices of air and water causing the visual input from the

hemisphere above water to compress into a cone of about 97u
under water (Figure 2a). Since the murky water does not offer any

directional cues the animals are reliant on the ability of the ULE to

detect the mangrove canopy for long distance navigation [16]. The

box jellyfish scans Snell’s window for the contrast line between the

mangrove canopy and the open sky (Figure 2b), and uses the

canopy as indication for the direction back to their preferred

habitat between the mangrove roots [16]. The navigational task

imposes an intriguing problem on the visual system of T. cystophora,

since adaptation in the photoreceptors should render the medusa

blind and unable to detect the canopy. The canopy is a stationary

object seen on a relatively long distance (several meters), and if

only the speed of the swimming motion is considered, it proves

insufficient to refresh the retinal image. The navigational

swimming speed of T. cystophora is about 5 cm/s which would

cause the contrast line to move less than 0.4u/s on the retina of the

ULE, at a distance of approximately 5 m from the canopy.

Environmental effects are also inadequate to prevent adaptation

since the mangrove habitat offers remarkably quiet water where

waves are rarely seen and currents only originate from a minimal

tide of approximately 30 cm. Furthermore, muscles are not found

in association with the eyes [19], which implies that vertebrate

type fixational eye movements [6,8] are not available to the box

jellyfish.

We hypothesize the presence of an alternative mechanism to

oculomotor capabilities where the bell contractions during

swimming will cause the entire eye bearing rhopalium to swing

and thereby refresh the retinal image. The bell contractions are

likely to cause the rhopalium to swing in a pendular fashion and if

this swinging is of a magnitude comparable to the receptive angles

of the photoreceptors, the locomotion of the animal could be used

as an indirect mechanism to prevent adaptation in the upper lens

eye.

Results

To test our hypothesis we did macro video recordings of freely

swimming animals and they revealed that the swim contractions

did indeed cause the rhopalia to swing. The detailed analysis of the

swim mechanics showed the average angular shift of the

rhopalium (DRA) induced by the bell contraction (Figure 1) to

be 18.5u60.5u. The full amplitude of the swing was completed

within a timeframe (Dt) of 86 ms65 ms. Interestingly, DRA and

Dt remained constant irrespective of the swimming direction of the

animal and variations in the swing pattern (Figures 3 and 4). The

values of DRA were 19u, 18.1u and 18.5u for horizontal, vertical

and 45u upward swimming respectively and Dt values 80 ms,

89 ms and 89 ms for horizontal, vertical and 45u upward

swimming respectively (Table 1).

To substantiate the behavioural data we conducted a series of

electrophysiological experiments to confirm the functional signif-

icance of the rhopalial swing. Here the upper lens eye was exposed

to a moving shadow in the visual field designed to mimic the

contrast line between the mangrove canopy and the open sky

(Figure 5). Only dark-adapted photoreceptors that were exposed to

light in the experimental protocol produced a response, whereas

light adapted photoreceptors did not respond to a change in light

intensity. The shadow was manipulated to simulate a rhopalial

swing with amplitudes between 5u and 40u in steps of 5u which

were all completed in 100 ms. We also tested the temporal

component of the swing by changing the duration of the moving

shadow (25, 50, 100, 200, and 400 ms), all with the same

amplitude of 20u. We monitored the physiological response from

the photoreceptors and possibly also some higher order neurons by

electroretinogram (ERG) recordings (Figure 6a). Moving the

shadow within the visual field of the upper lens eye produced a

graded response typical of extracellular recordings from photore-

ceptors [20] (Figure 6a). The ERG response increased 5-fold when

increasing the swing amplitude from 5u to 20u, but increasing the

swing further had no additional effect (Figure 6b). Similarly, the

ERG response increased almost two-fold when manipulating the

temporal component from 25 to 100 ms, where after the response

again reached a plateau (Figure 6c). We performed the entire

protocol at two different intensities (10 Wm22sr21 and

30 Wm22sr21), and while the ERG responses were generally

slightly smaller in the lower intensity, approximately 5 %, the

relative changes were the same (Figure 6 b and c).

Discussion

Morphological specialisations in the visual system of the box

jellyfish ensure a constant vertical orientation of the visual field of

the eyes [10,16,21], but the stability of the system makes the

animals vulnerable to image fading of stationary objects [6,7]. It

has never been unequivocally proven that photoadaptation occur

in cubozoan photoreceptors, but since it is a general feature of all

known ciliated photoreceptors [1,5] and box jellyfish photorecep-

tors work through an opsin- Gs-protein cascade [12], we assume it

to be the case. Tripedalia cystophora relies on terrestrial visual cues to

navigate back to their preferred habitat under the mangrove

canopy [16] by detecting the contrast line between the canopy and

the open sky (Figure 2b). The contrast line is stationary and the

inability to detect it could prove fatal for the animal. Through

Figure 1. Bell contractions induce rhopalial swing. Due to
morphological specializations bell contractions in the box jellyfish
Tripedalia cystophora make the rhopalia swing between the relaxed
state (a) and the contracted state (b). The corresponding angular
change is depicted in c and d. Video analysis of free swimming animals
determined the average swing amplitude of 18–19u to occur within 80–
100 ms regardless of the swimming direction (see also Table 1). Here a
vertical swimming animal is shown but the results were the same for
horizontal and 45u upwards swimming. These values match the known
spatio-temporal resolution of the upper lens eye (d) suggesting a
connection between the biomechanics of the locomotion and
refreshing the retinal image. ULE, upper lens eye and LLE, lower lens
eye.
doi:10.1371/journal.pone.0066442.g001

Fixational Eye Movements in Box Jellyfish
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behavioural and extracellular electrophysiological experiments we

have found that box jellyfish utilize the swim contractions to

counteract the putative image fading in the upper lens eye.

Traditionally eye evolution has been viewed as an optimization of

the inverse relationship between spatial resolution and light

sensitivity [22]. But a parallel to fixational eye movements in this

basal metazoan group could indicate that photoadaptation has

exerted additional selective pressure on the evolution of visual

systems.

For the swim contractions to function efficiently as fixational eye

movements they must induce a change to the retinal image of a

magnitude that shifts the visual scene one half width of the

photoreceptor acceptance angle within a single integration time.

We observed large variations in the pattern of the rhopalial swing

(Figure 3) in response to a rather invariable bell contraction, yet

they resulted in relatively constant swing amplitudes and durations

regardless of the orientation of the animal itself (Table 1). These

consistencies suggest a functional significance and since swing

amplitudes are much larger during bell contractions than in the

inactive periods between bell contractions where the animal glides

through the water (Figure 4) only the contractions could

potentially refresh the retinal image.

The optimal ERG response from the photoreceptors occurred

when displacing the shadow 20u within 100 ms which matches our

behavioural results (Figure 6) and the findings of Nilsson et al

(2005) [11] that the approximately 400 photoreceptors which

make up the retina of the upper lens eye in T. cystophora have

acceptance angles with half widths varying from 10 to 20u
depending on their location in the retina. A curious aspect of T.

cystophora vision contributes to a rather poor image quality; the lens

of the camera-type eyes do not focus the image on the retina but

rather a distance behind it [11]. But it is only due to this blurry

image, with a spatial resolution of 10–20u, that a crude system

such as swim contractions can function as fixational eye

movements. Had the box jellyfish retinal image been of the same

acuity as in human eyes, the inaccuracy of the rhopalial swing

amplitude would have contributed to image blur rather than

preventing it. There is also a close match with the known

Figure 2. Snell’s window. The compression of the 180u horizon above water (green broken line) into a 97u subsurface cone (blue broken line) (a)
enable the box jelly to long distance navigate back under the mangrove canopy. b, the contrast line between the canopy and the open sky as seen
through Snell’s window (without photoadaptation). c, the effect of a swim contraction on the retinal image where activated photoreceptors will light
up on a background of inactive receptors.
doi:10.1371/journal.pone.0066442.g002

Figure 3. Variation in rhopalial swing pattern. Tracking the
rhopalial angle through a single bell contraction show variations in the
swing pattern, but the swing amplitude and swing time remain
relatively constant (see Table 1). The tracings are synchronized in
relation to the onset of the bell contraction, and a contraction of each
of the swimming directions is shown. Red trace is the average bell
diameter for the three contractions.
doi:10.1371/journal.pone.0066442.g003

Fixational Eye Movements in Box Jellyfish
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integration time, which varies with light intensity, but remains

within the magnitude of 100 ms for the intensities used here [23].

The two intensities used in this study (10 Wm22sr21 and

30 Wm22sr21) produced the same relative ERG response to the

imposed DRA and Dt, suggesting a very robust system that works

across a range of light intensities.

Physiologically it is important that there is a close correlation

between the spatio-temporal resolution of the photoreceptors and

the fixational eye movements of the box jellyfish. Photoadaptation

will be counteracted by any movement of the eye, but if the

movement is too small or too fast sub-optimal contrast will be

achieved. If the movement is too large or too slow unnecessary

blur will be added to the image without additional gain in counter

adaptation and thereby contrast. Taken together, the constancy in

amplitude and timing of the swing and the strong correlation with

the known spatio-temporal resolution of the upper lens eye allow

us to speculate that bell contractions, in addition to serving for

locomotion, in the box jellyfish T. cystophora, function as a parallel

to the fixational eye movements in mammals, which refresh the

retinal image with minimal loss in visual acuity. In an adapted

photoreceptor the change in photon capture, caused by move-

ment, will automatically initiate an integration time, the duration

of which is set by the contrast (relative change in photon capture)

achieved by the movement. The amplitude of the photoreceptor

response is directly correlated with the perceived contrast of the

visual image [24], and the retinal photoreceptors of the ULE,

which experience the greatest intensity change within a swing, will

naturally be the most affected. The contrast line between the

canopy and the sky will light up (activated photoreceptors) on a

dark background (inactive photoreceptors) (Figure 2c). Thereby

the animal has filtered the information needed for navigation from

a more complex visual scene as early as the retinal level and

Figure 4. Tracking the rhopalial swing amplitude. Tracking the amplitude of the rhopalial swing, DRA, and the swing time, Dt, in a series of
swim contractions (a) showed deviation from the hypothesized sinusoidal swing pattern but most contractions induced a rhopalial swing which
matches the spatio-temporal resolution of the upper lens eye (c). It is evident that the bell contraction (a, red trace) induced the rhopalial swing (a,
black trace). The pictograms in b represent the orientation of the animal and, red arrows, the swimming direction for each of the tracked
contractions. The contraction parameters (duration, degree of contraction, DRA and Dt) remained relatively constant (c).
doi:10.1371/journal.pone.0066442.g004

Table 1. Rhopalial displacement induced by bell
contractions.

Swimming direction Mean DRA ±SEM Mean Dt ±SEM

Horizontal 1961.2u 8067 ms

Vertical 18.160.7u 8965 ms

45u upward 18.560.6u 8967 ms

The swing amplitude (DRA) and time (Dt) of the rhopalium varies little with the
direction of swimming. DRA and Dt match the known spatio-temporal
resolution of the upper lens eye. Mean 6 standard error of the mean, N = 30.
doi:10.1371/journal.pone.0066442.t001

Figure 5. Imitating the swim contractions. Light area in the circles
represents the amount of open sky in the visual field. The upper lens
eye was exposed to a changing area mimicking the effect of a swim
contraction (red trace). Blue trace depicts a typical ERG response to the
change in light area of the fiber optic image bundle.
doi:10.1371/journal.pone.0066442.g005

Fixational Eye Movements in Box Jellyfish
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circumvented the need for vertebrate-like neural processing in the

CNS to remove image blur, which likely would be beyond the

neural capacity of cubomedusae.

The eye bearing rhopalium is a rigid structure, which implies

that all the eye types experience the same swing amplitude. This

work focused on the ULE since the visual ecology of the other eyes

is less established. It is known that the lower lens eye is involved in

obstacle avoidance behavior [18] but it is not clear whether swim

contractions are necessary for detecting the prop roots under water

or if the swimming speed itself is sufficient for detecting nearby

structures.

Not only mammals and box jellyfish have evolved mechanisms

the refresh the retinal image. The ctenid spider, Cupiennius salei, has

spontaneous retinal microsaccades of approx. 12 Hz to prevent

photoadaptation in the antero-median eyes. This system compares

to the swim contractions of T. cystophora in that the saccades

correspond to the spatio-temporal resolution of the spider eyes

[25]. Interestingly, the spider might use photoadaptation to their

advantage in their postero-lateral eyes. By not counteracting the

photoadaptation these eyes are thought to be used in movement

detection only [26], allowing all stationary objects to fade from the

perceived image. We suggest an even more ingenious and efficient

system to be present in the box jellyfish, where stationary objects

will gain contrast during pulsing, as shown here (Figure 2c), while

pauses in swimming [27] will enhance moving objects on a

stationary background. Both stationary and moving objects will be

detected in the same eye but filtered by the innate behavior of the

animal respectively. For animals with limited neural processing

capacity, such simple matched filters [28] are probably of great

importance in order for them to perform their seemingly advanced

visually-guided behaviours.

In conclusion, our results suggest that a fixational eye movement

strategy is necessary to detect stationary objects not only in

mammals but throughout Metazoa. Box jellyfish can utilize an

already operational system by having the swim contractions

refresh the retinal image in the upper lens eye. These findings

point to an often overlooked aspect in the evolution of visual

systems. Eye evolution has largely been considered driven by

optimization of the inverse relationship between light sensitivity

and spatial resolution in order for the animals to maximize their

visual performance [22]. However, if fixational eye movements

counteracting photoadaptation are present already in the most

basal animal group with image-forming eyes, the box jellyfish, our

findings suggest that photoadaptation also has exerted severe

selection pressures that should be considered in the evolution of

visual systems. If eyes are not accompanied by a system to

counteract photoadaptation they will be less suitable in detecting

stationary objects, even with the most advanced optics.

Materials and Methods

Animals
The experiments were performed on adult medusae (approx.

10 mm in bell diameter) of Tripedalia cystophora Conant 1897

obtained from our cultures at the University of Copenhagen,

Denmark. In the cultures the medusae were kept in a 200 l tank

with circulating seawater at 28% and about 28uC and fed SELCO

(INVE Technologies, Dendermonde, Belgium)-enriched Artemia

daily. They reached adult size in 2–3 months.

Video Analysis
To minimise the animal’s movements in the plane parallel to the

direction of filming the medusae were transferred from the culture

tank to a transparent aquarium (inside dimensions w:d:h;

Figure 6. Electroretinogram response to a moving contrast
line. The electroretinogram (ERG) confirmed the finding that the bell
contractions refreshed the retinal image. Even though all changes in
light are registered by the photoreceptors, the optimal response and,
thereby optimal image contrast, was obtained when the change
matched the photoreceptor acceptance angle (a). A shadow was
moved in the visual field of the upper lens eye to mimic the contrast
line between the mangrove canopy and the open sky, and manipulated
to test the neural response to different rhopalial swing amplitudes.
There was a marked increase in the ERG response up to a 20u
displacement of the shadow after which no significant change in ERG
amplitude was detected (b). A similar result was obtained when
manipulating the swing time (c); here the ERG amplitude did not
increase further when the shadow displacement time was longer than
100 ms. These data match the known spatio-temporal resolution of the
ULE and strongly support the hypothesis that the bell contractions
refresh the retinal image in the upper lens eye of T. Cystophora. Vertical
black lines in b and c represent the amplitude and time of the rhopalial
swing measured in a horizontal swimming animal, which is preferred
swimming direction of the animal for navigational purposes (interrupt-
ed lines, 6 standard deviation of the mean). The experiments were
performed at two light intensities (solid line, 30 Wm22sr21 and
interrupted line, 10 Wm22sr21, 6 standard deviation of the mean,
N = 8).
doi:10.1371/journal.pone.0066442.g006

Fixational Eye Movements in Box Jellyfish
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20:2:11 cm). Bell contractions were filmed using a video camera

(DXC-950P, Sony Corp, Tokyo, Japan) fitted with a Nikon

105 mm macro objective (shutter speed 1/500 s, f8–f11). Suffi-

cient lighting for adequate picture quality were supplied by four

100 W Philips soft tone light bulbs. Single frames were grabbed

using Pinnacle Studio software, transferred into Corel Draw

(version X13 Corel Corp, Ottawa, Canada) and deinterlaced into

separate fields, thereby producing a time resolution of 20 ms. The

angle at which the rhopalium was suspended from the bell was

determined by a line through two rhopalial fix points (midpoint of

stalk attachment and midpoint of the crystalline weight) compared

to vertical (Figure 1). The rhopalial angle, as well as the bell

diameter was determined in each field. The rhopalial movement

and the corresponding contraction time were determined for three

swimming directions: horizontal, vertical and approximately 45u
upwards (Figure 3). Three contractions of each direction were

analyzed from ten animals. Only contractions where the rhopalial

movement was directly perpendicular to the direction of filming

were analyzed to avoid discrepancies due to movement in the third

plane. The rhopalial angle and the bell diameter were plotted

against time and the maximum amplitude of the rhopalial

swinging (DRA) within the timeframe (Dt) was recorded for each

contraction (Figure 3 and 4). To test whether the rhopalia were

swinging between contractions due to other influences, the

rhopalial angle were analysed through a series of contractions

(Figure 4).

Electroretinogram (ERG)
The recording procedures and animal handling strictly followed

the experimental setup described in O9Connor et al (2010)[23].

The rhopalium was oriented with the ULE directed upward and a

fiber optic image bundle (extracted from an Olympus CF-100TL

endoscope) was placed such that the image covered 90u of the

visual field of the ULE. At the distal end of the light guide a

Luxeon V star LED (LXHL-LW6C, cool white, Lumileds

Lighting, LLC, San Jose, CA, USA) mounted in an optical bench

(Linus, Leiden, Germany) ensured an even illumination of the

entire light guide surface. A piece of black cardboard was mounted

on an outlet speaker membrane and placed between the light

source and the distal end of the light guide so that it covered

approximately L of the surface area. The experimental setup was

manipulated until the shadow displacement affected the area on

the retina immediately above the suction electrode. The amplitude

(square waves) and speed of the speaker membrane was controlled

by LabVIEW 8.5 software and the same DAQCard-NI6229 data

acquisition card used for recording (both National Instruments,

Austin, TX, USA). The shadow was manipulated to simulate

various swing amplitudes by exposing the ULE to shadow

displacement in 5u increments from 5 to 40u within 25–400 ms.

Angular tests ran at a shadow displacement time of 100 ms and

swing time tests with a displacement of 20u and the entire

experimental protocol was performed at two light intensities

(30 Wm22sr21 and 10 Wm22sr21). Eight rhopalia from adult

animals were used for the experiments, and each rhopalium was

exposed to the entire protocol (all angles, shadow times and

intensities). The experiments were concluded within one hour after

sectioning.

Supporting Information

Movie S1 Video recording of the rhopalial swing. The

rhopalial angle (yellow interrupted line) were tracked through a

bell contraction and compared to the angle at the relaxed, or t0,

position (red interrupted line). The video was slowed to 2 frames

per second.
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