1,332 research outputs found

    Prior physical exertion modulates allocentric distance perception: a demonstration of task-irrelevant cross-modal transfer

    Get PDF
    Physical exertion has been previously shown to influence distance perception in the egocentric framework. In this study, we show that physical exertion influences allocentric distance perception. Twenty healthy volunteers made allocentric line length estimates following varying levels of physical exertion. Each participant was presented with 30 different line lengths ranging from 1 to 12 cm, and each length was presented three times. Each line presentation was preceded by the participant exerting one of the following three levels of their maximal voluntary force (MVF): 20, 50, or 80 % MVF using their hand in the pinch force task. Psychometric curves were obtained for the lines perceived as 'long' following each of the three force levels. Lines that were perceived as 'short' following 20 and 50 % MVF were perceived as 'long' following 80 % MVF; that is, there was a significant leftward shift in the psychometric curve following 80 % MVF when compared to 20 and 50 % MVF. Here, we demonstrate that physical exertion influences perception of distances in the allocentric framework. We discuss our findings with respect to cross-modal interactions, fatigue physiology, peri- and extra-personal space interactions

    An effect of age on implicit memory that is not due to explicit contamination: implications for single and multiple-systems theories

    Get PDF
    Recognition memory is typically weaker in healthy older relative to young adults, while performance on implicit tests (e.g., repetition priming) is often comparable between groups. Such observations are commonly taken as evidence for independent explicit and implicit memory systems. On a picture version of the continuous identification with recognition (CID-R) task, we found a reliable age-related reduction in recognition memory, while the age effect on priming did not reach statistical significance (Experiment 1). This pattern was consistent with the predictions of a formal single-system model. Experiment 2 replicated these observations using separate priming (continuous identification; CID) and recognition phases, while a combined data analysis revealed a significant effect of age on priming. In Experiment 3, we provide evidence that priming in this task is unaffected by explicit processing, and we conclude that the age difference in priming is unlikely to have been driven by differences in explicit processing between groups of young and older adults ("explicit contamination"). The results support the view that explicit and implicit expressions of memory are driven by a single underlying memory system

    Virulence related sequences: insights provided by comparative genomics of Streptococcus uberis of differing virulence

    Get PDF
    Background: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains. Results: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection. Conclusion: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first “whole-genome” comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content

    Female Burying Beetles Benefit from Male Desertion: Sexual Conflict and Counter-Adaptation over Parental Investment

    Get PDF
    Sexual conflict drives the coevolution of sexually antagonistic traits, such that an adaptation in one sex selects an opposing coevolutionary response from the other. Although many adaptations and counteradaptations have been identified in sexual conflict over mating interactions, few are known for sexual conflict over parental investment. Here we investigate a possible coevolutionary sequence triggered by mate desertion in the burying beetle Nicrophorus vespilloides, where males commonly leave before their offspring reach independence. Rather than suffer fitness costs as a consequence, our data suggest that females rely on the male's absence to recoup some of the costs of larval care, presumably because they are then free to feed themselves on the carcass employed for breeding. Consequently, forcing males to stay until the larvae disperse reduces components of female fitness to a greater extent than caring for young singlehandedly. Therefore we suggest that females may have co-evolved to anticipate desertion by their partners so that they now benefit from the male's absence

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Posture Does Not Matter! Paw Usage and Grasping Paw Preference in a Small-Bodied Rooting Quadrupedal Mammal

    Get PDF
    BACKGROUND: Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). METHODOLOGY/PRINCIPAL FINDINGS: We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. CONCLUSIONS/SIGNIFICANCE: Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore