31 research outputs found
The Application of ecological stoichiometry to plant-microbial-soil organic matter transformations
L'apèndix estĂ disponible en lĂnia a http://dx.doi.org/10.1890/14-0777.1.smEl tĂtol del post-print Ă©s The Application of ecological stoichiometry to microbial decomposition: from plants to microbial communitiesAquest treball tambĂ© ha rebuts els ajuts segĂĽents: MICDIF integrated project (linking microbial diversity and function across scales and ecosystems), funded by the Austrian Science Fund FWF (S 10006-B01, S 10006-B06, S 10006- B07)Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales
An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma.
Background Glioblastoma (GBM) is the commonest primary malignant brain tumour in adults and effective treatment options are limited. Combining local chemotherapy with enhanced surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery. Methods We conducted a multicentre feasibility study of 5-ALA with BCNU wafers followed by standard-of-care chemoradiotherapy (chemoRT) in patients with suspected GBM. Patients judged suitable for radical resection were administered 5-ALA pre-operatively and BCNU wafers at the end resection. Post-operative treatment continued as per routine clinical practice. The primary objective was to establish if combining 5-ALA and BCNU wafers is safe without compromising patients from receiving standard chemoRT. Results Seventy-two patients were recruited, sixty-four (88.9%) received BCNU wafer implants, and fifty-nine (81.9%) patients remained eligible following formal histological diagnosis. Seven (11.9%) eligible patients suffered surgical complications but only two (3.4%) were not able to begin chemoRT, four (6.8%) additional patients did not begin chemoRT within 6 weeks of surgery due to surgical complications. Eleven (18.6%) patients did not begin chemoRT for other reasons (other toxicity (n = 3), death (n = 3), lost to follow-up/withdrew (n = 3), clinical decision (n = 1), poor performance status (n = 1)). Median progression-free survival was 8.7 months (95% CI: 6.4-9.8) and median overall survival was 14.7 months (95% CI: 11.7-16.8). Conclusions Combining BCNU wafers with 5-ALA-guided surgery in newly diagnosed GBM patients is both feasible and tolerable in terms of surgical morbidity and overall toxicity. Any potential therapeutic benefit for the sequential use of 5-ALA and BCNU with chemoRT requires further investigation with improved local delivery technologies
The Application of ecological stoichiometry to plant-microbial-soil organic matter transformations
L'apèndix estĂ disponible en lĂnia a http://dx.doi.org/10.1890/14-0777.1.smEl tĂtol del post-print Ă©s The Application of ecological stoichiometry to microbial decomposition: from plants to microbial communitiesAquest treball tambĂ© ha rebuts els ajuts segĂĽents: MICDIF integrated project (linking microbial diversity and function across scales and ecosystems), funded by the Austrian Science Fund FWF (S 10006-B01, S 10006-B06, S 10006- B07)Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales
Pharmacological Inhibition of Class IIA HDACs by LMK-235 in Pancreatic Neuroendocrine Tumor Cells
Histone deacetylases (HDACs) play a key role in epigenetic mechanisms in health and disease and their dysfunction is implied in several cancer entities. Analysis of expression patterns in pancreatic neuroendocrine tumors (pNETs) indicated HDAC5 to be a potential target for future therapies. As a first step towards a possible treatment, the aim of this study was to evaluate the in vitro cellular and molecular effects of HDAC5 inhibition in pNET cells. Two pNET cell lines, BON-1 and QGP-1, were incubated with different concentrations of the selective class IIA HDAC inhibitor, LMK-235. Effects on cell viability were determined using the resazurin-assay, the caspase-assay, and Annexin-V staining. Western Blot and immunofluorescence microscopy were performed to assess the effects on HDAC5 functionality. LMK-235 lowered overall cell viability by inducing apoptosis in a dose- and time-dependent manner. Furthermore, acetylation of histone-H3 increased with higher LMK-235 concentrations, indicating functional inhibition of HDAC4/5. Immunocytochemical analysis showed that proliferative activity (phosphohistone H3 and Ki-67) decreased at highest concentrations of LMK-235 while chromogranin and somatostatin receptor 2 (SSTR2) expression increased in a dose-dependent manner. HDAC5 expression was found to be largely unaffected by LMK-235. These findings indicate LMK-235 to be a potential therapeutic approach for the development of an effective and selective pNET treatment