60 research outputs found

    Novel method for high-throughput colony PCR screening in nanoliter-reactors

    Get PDF
    We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologie

    Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2.

    Get PDF
    Clinical studies have proven antiviral effectiveness of treatment with a Designed Ankyrin Repeat Protein (DARPin) specific against the spike protein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). More information on transport mechanisms and efficiency to the site of action is desirable. Transepithelial migration through air-liquid interface (ALI) cultures of reconstituted human bronchial epithelia (HBE) was assessed by Enzyme-Linked Immunosorbent Assays and Confocal Laser Scanning Microscopy for different DARPin designs in comparison to a monoclonal antibody. Antiviral efficacy against authentic SARS-CoV-2, applied apically on HBE, was investigated based on viral titers and genome equivalents, after administration of therapeutic candidates on the basal side. Transepithelial translocation of all DARPin candidates and the monoclonal antibody was efficient and dose dependent. Small DARPins and the antibody migrated more efficiently than larger molecules, indicating different transport mechanisms involved. Microscopic analyses support this, demonstrating passive paracellular transport of smaller DARPins and transcellular migration of the larger molecules. All therapeutic candidates applied to the basal side of HBE conferred effective protection against SARS-CoV-2 infection. In summary, we have shown that DARPins specific against SARS-CoV-2 translocate across intact airway epithelia and confer effective protection against infection and viral replication

    Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field

    Get PDF
    Background Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. Results Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. Conclusions These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    Die Bedeutung von Business Rules im Customer Relationship Management

    No full text
    Der Beitrag diskutiert Möglichkeiten zur Automatisierung von Kundenbeziehungsprozessen im Customer Relationship Management mit Hilfe von Business Rules. Anhand einer CRM-Architektur werden Anwendungsmöglichkeiten erörtert und am Beispiel einer Cross-Selling-Kampagne vertieft. Technische Aspekte werden dabei nicht im Detail betrachtet. Der Schwerpunkt liegt vielmehr in der Diskussion von Automatisierungs- und Integrationspotenzialen durch den Einsatz von Business Rules, wie sie in zunehmend individualisierten Kundenbeziehungen in Massenmärkten gegeben sind
    corecore