15 research outputs found

    Rainfall modeling for integrating radar information into hydrological model

    Get PDF
    A spatial rainfall model was applied to radar data of air mass thunderstorms to yield a rainstorm representation as a set of convective rain cells. The modeled rainfall was used as input into hydrological model, instead of the standard radar-grid data. This approach allows a comprehensive linkage between runoff responses and rainfall structures. Copyright © 2005 Royal Meteorological Society

    Geology, geochemistry and earthquake history of Lō`ihi Seamount, Hawai`i

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemie der Erde - Geochemistry 66 (2006): 81-108, doi:10.1016/j.chemer.2005.09.002.A half century of investigations are summarized here on the youngest Hawaiian volcano, Lō`ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lō`ihi was mostly forgotten until two earthquake swarms in the 1970’s led to a dredging expedition in 1978, which recovered young lavas. This led to numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a realtime submarine observatory that continuously monitored Lō`ihi’s seismic activity for three months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai`i, was preceded by at least one eruption and accompanied by the formation of a ~300-m deep pit crater, renewing interest in this submarine volcano. Seismic and petrologic data indicate that magma was stored in a ~8-9 km deep reservoir prior to the 1996 eruption. Studies on Lō`ihi have altered conceptual models for the growth of Hawaiian and other oceanic island volcanoes and led to a refined understanding of mantle plumes. Petrologic and geochemical studies of Lō`ihi lavas showed that the volcano taps a relatively primitive part of the Hawaiian plume, producing a wide range of magma compositions. These compositions have become progressively more silica-saturated with time reflecting higher degrees of partial melting as the volcano drifts towards the center of the hotspot. Seismic and bathymetric data have highlighted the importance of landsliding in the early formation of an ocean island volcano. Lō`ihi’s internal structure and eruptive behavior, however, cannot be fully understood without installing monitoring equipment directly on the volcano. The presence of hydrothermal activity at Lō`ihi was initially proposed based on nontronite deposits on dredged samples that indicated elevated temperatures (31oC), and on the detection of water temperature, methane and 3He anomalies, and clumps of benthic micro-organisms in the water column over the volcano in 1982. Submersible observations in 1987 confirmed a low temperature system (15-30oC) prior to the 1996 formation of Pele’s Pit. The sulfide mineral assemblage (wurtzite, pyrrhotite, and chalcopyrite) deposited after the pit crater collapsed are consistent with hydrothermal fluids >250oC. Vent temperatures have decreased to ~60oC during the 2004 dive season indicating the current phase of hydrothermal activity may be waning.This work was supported by a NSF grant to M. Garcia (OCE 97-29894)
    corecore