1,371 research outputs found

    Copper Complexes as Influenza Antivirals: Reduced Zebrafish Toxicity

    Get PDF
    Copper complexes have previously been developed to target His37 in influenza M2 and are effective blockers of both the wild type (WT) and the amantadine-resistant M2S31N. Here, we report that the complexes were much less toxic to zebrafish than CuCl2. In addition, we characterized albumin binding, mutagenicity, and virus resistance formation of these metal complexes, and employed steered molecular dynamics simulations to explore whether the complexes would fit in M2. We also examined their anti-viral efficacy in a multi-generation cell culture assay to extend the previous work with an initial-infection assay, discovering that this is complicated by cell culture medium components. The number of copper ions binding to bovine serum albumin (BSA) correlates well with the number of surface histidines and BSA binding affinity is low compared to M2. No mutagenicity of the complexes was observed when compared to sodium azide. After 10 passages of virus in MDCK culture, the EC50 was unchanged for each of the complexes, i.e. resistance did not develop. The simulations revealed that the compounds fit well in the M2 channel, much like amantadine

    Comparison of two methods to identify live benthic foraminifera : a test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography, 21 (2006): PA4210, doi:10.1029/2006PA001290.The conventional method to distinguish live from dead benthic foraminifers uses Rose Bengal, a stain that reacts with both live and dead cytoplasm. CellTracker Green CMFDA is a fluorogenic probe causing live cells to fluoresce after proper incubation. To determine the more accurate viability method, we conducted a direct comparison of Rose Bengal staining with CellTracker Green labeling. Eight multicore tops were analyzed from Florida Margin (SE United States; 248-751 m water depths), near Great Bahama Bank (259-766 m), and off the Carolinas (SE United States; 220 m, 920 m). On average, less than half the Rose Bengal-stained foraminifera were actually living when collected. Thus, while Rose Bengal can significantly overestimate abundance, combined analyses of CellTracker Green and Rose Bengal can provide insights on population dynamics and effects of episodic events. Initial stable isotope analyses indicate that the CellTracker Green method does not significantly affect these important paleoceanographic proxies.Funding for this research was provided by the National Science Foundation Research Experience for Undergraduates Program (grant #OCE-0139423; PI, D. McCorkle, WHOI) and NSF grants OCE-9911654 and OCE-0351029

    The state of research into children with cancer across Europe : new policies for a new decade

    Get PDF
    Overcoming childhood cancers is critically dependent on the state of research. Understanding how, with whom and what the research community is doing with childhood cancers is essential for ensuring the evidence-based policies at national and European level to support children, their families and researchers. As part of the European Union funded EUROCANCERCOMS project to study and integrate cancer communications across Europe, we have carried out new research into the state of research in childhood cancers. We are very grateful for all the support we have received from colleagues in the European paediatric oncology community, and in particular from Edel Fitzgerald and Samira Essiaf from the SIOP Europe office. This report and the evidence-based policies that arise from it come at a important junction for Europe and its Member States. They provide a timely reminder that research into childhood cancers is critical and needs sustainable long-term support.peer-reviewe

    The GYMSSA trial: a prospective randomized trial comparing gastrectomy, metastasectomy plus systemic therapy versus systemic therapy alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard of care for metastatic gastric cancer (MGC) is systemic chemotherapy which leads to a median survival of 6-15 months. Survival beyond 3 years is rare. For selected groups of patients with limited MGC, retrospective studies have shown improved overall survival following gastrectomy and metastasectomies including peritoneal stripping with continuous hyperthermic peritoneal perfusion (CHPP), liver resection, and pulmonary resection. Median survival after liver resection for MGC is up to 34 months, with a five year survival rate of 24.5%. Similarly, reported median survival after pulmonary resection of MGC is 21 months with long term survival of greater than 5 years a possibility. Several case reports and small studies have documented evidence of long-term survival in select individuals who undergo CHPP for MGC.</p> <p>Design</p> <p>The GYMSSA trial is a prospective randomized trial for patients with MGC. It is designed to compare two therapeutic approaches: gastrectomy with metastasectomy plus systemic chemotherapy (GYMS) versus systemic chemotherapy alone (SA). Systemic therapy will be composed of the FOLFOXIRI regimen. The aim of the study is to evaluate overall survival and potential selection criteria to determine those patients who may benefit from surgery plus systemic therapy. The study will be conducted by the Surgery Branch at the National Cancer Institute (NCI), National Institutes of Health (NIH) in Bethesda, Maryland. Surgeries and followup will be done at the NCI, and chemotherapy will be given by either the local oncologist or the medical oncology branch at NCI.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID. NCT00941655</p

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO)

    Get PDF
    The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly regulated by type I (IFN-β) and II interferons (IFN-γ), and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation

    Unfertilized Xenopus Eggs Die by Bad-Dependent Apoptosis under the Control of Cdk1 and JNK

    Get PDF
    Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation

    Mixed-species plantations of eucalyptus with nitrogen fixing trees: a review

    Get PDF
    Mixed-species plantations of Eucalyptus with a nitrogen (N2) fixing species have the potential to increase productivity while maintaining soil fertility, compared to Eucalyptus monocultures. However, it is difficult to predict combinations of species and sites that will lead to these benefits. We review the processes and interactions occurring in mixed plantations, 5 and the influence of species or site attributes, to aid the selection of successful combinations of species and sites. Successful mixtures, where productivity is increased over that of monocultures, have often developed stratified canopies, such that the less shade-tolerant species overtops the more shadetolerant species. Successful mixtures also have significantly higher rates of N and P cycling than 10 Eucalyptus monocultures. It is therefore important to select N2-fixing species with readily decomposable litter and high rates of nutrient cycling, as well as high rates of N2-fixation. While the dynamics of N2-fixation in tree stands are not well understood, it appears as though eucalypts can benefit from fixed N as early as the first or second year following plantation establishment. A meta-analysis of 18 published studies revealed several trials in which mixtures were significantly 15 (

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    corecore