59 research outputs found

    Comparison of physical activity and sleep measures based on subjective and objective measures.

    Get PDF
    Sleep times and patterns are related to sport performance. Previous research suggests that sleep patterns contribute to differences in laboratory maximal effort treadmill tests, but little research has been done on maximal effort testing in the field. Further, research is lacking on whether sprint and acceleration times are correlated to sleep patterns. PURPOSE: The purpose of this study is to determine if a relationship exists between field performance testing and sleep patterns in female high school field hockey players. METHODS: Within the first week of pre-season training female high school field hockey players (n=15, age=15.47±1.06) completed a demographic survey, Pittsburgh Sleep Quality Index (PSQI) scale, and a seven-day sleep-wake journal using an online survey platform (Qualtrics, Provo, UT). Sleep latency, overall sleep quality, and duration of sleep were three PSQI measures chosen for analysis. The onset of sleep time and concentration were two measures used from the sleep-wake journal for analysis. A beep test and six 40m sprints with 10m splits were conducted within the first week of pre-season training, with 48 hours between each test. Beep test was a 20m multistage test that involved running in accordance to a pre-recording of beeps. Field tests were conducted on a level grass field under research supervision. An average of six 40m sprints and 10m splits were taken for analysis. RESULTS: PSQI revealed no participants suffered from sleep disorders. A Pearson correlation was conducted between performance and sleep pattern variables. A positive strong correlation exists between 40m average sprint time and 10m average sprint time (r= 0.896, p≤0.05). A negative correlation exists between onset of sleep and total sleep time (r= -0.598, p≤0.01). There were no correlations between performance and sleep pattern variables. CONCLUSION: These results indicate maximal effort field-testing does not correlate with sleep patterns in female high school field hockey players

    Lunar Flashlight

    Get PDF
    The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC

    Near-Earth Asteroid Scout

    Get PDF
    Near-Earth asteroids (NEAs) are easily accessible objects in Earth's vicinity. As NASA continues to refine its plans to possibly explore NEAs with humans, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit an NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The NASA Marshall Space Flight Center (MSFC) and NASA Jet Propulsion Laboratory are jointly developing the Near-Earth Asteroid Scout (NEAS) utilizing a low-cost CubeSat platform in response to the current needs for affordable missions with exploration science value. The mission is enabled by the use of an 85-sq m solar sail being developed by MSFC (figs. 1 and 2)

    Imaging X-Ray Polarimeter Explorer Systems Engineering Approach and Implementation

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer x-ray astrophysics mission being implemented by a geographically dispersed team. Each IXPE partner provides unique capabilities and experience which are utilized to design, build and launch the IXPE observator. A rigorous and iterative systems engineering approach is essential to ensuring the successful realization of reliable and cost effective IXPE mission system. The IXPE collaboration and observatory complexity provide both unique challenges and advantages for project systems engineering. The project uses established and tailored systems engineering (SE) methods and teaming approaches to achieve the IXPE mission goals. The IXPE systems engineering team spans all partner organizations. Currently, the project is in system integration and test working through structural environmental testing–vibration testing is just starting. Systems work is now focused on requirements management and maturity assessments, requirements verification and validation via sell-off packages (SOP) and interface control document (ICD) verification while supporting environmental test planning and execution. IXPE verification, validation and characterization (V&V) starts at the component/unit level and rolls up to appropriate higher levels where V&V compliance is assured by collaborative development by the cross-organizational V&V Team. This paper provides a technical summary of the IXPE concept of operations and mission-system (payload, spacecraft, observatory, ground system, launch vehicle), overviews the IXPE systems engineering approach (communications, project reviews, requirements analysis and management, baseline design and design trade studies, interfaces definition and documentation, resource management), describes the verification, validation and characterization activities (requirements validation, models and simulations validation, systems integration and test (I&T), system validation), discusses risk and opportunities philosophy and implementation, outlines COVID 19 accommodations, itemizes some key challenges and lessons-learned followed by the path to launch and conclusions

    Measuring and controlling medical record abstraction (MRA) error rates in an observational study.

    Get PDF
    BACKGROUND: Studies have shown that data collection by medical record abstraction (MRA) is a significant source of error in clinical research studies relying on secondary use data. Yet, the quality of data collected using MRA is seldom assessed. We employed a novel, theory-based framework for data quality assurance and quality control of MRA. The objective of this work is to determine the potential impact of formalized MRA training and continuous quality control (QC) processes on data quality over time. METHODS: We conducted a retrospective analysis of QC data collected during a cross-sectional medical record review of mother-infant dyads with Neonatal Opioid Withdrawal Syndrome. A confidence interval approach was used to calculate crude (Wald\u27s method) and adjusted (generalized estimating equation) error rates over time. We calculated error rates using the number of errors divided by total fields ( all-field error rate) and populated fields ( populated-field error rate) as the denominators, to provide both an optimistic and a conservative measurement, respectively. RESULTS: On average, the ACT NOW CE Study maintained an error rate between 1% (optimistic) and 3% (conservative). Additionally, we observed a decrease of 0.51 percentage points with each additional QC Event conducted. CONCLUSIONS: Formalized MRA training and continuous QC resulted in lower error rates than have been found in previous literature and a decrease in error rates over time. This study newly demonstrates the importance of continuous process controls for MRA within the context of a multi-site clinical research study

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Ancient Lowland Maya neighborhoods: Average Nearest Neighbor analysis and kernel density models, environments, and urban scale

    Get PDF
    Many humans live in large, complex political centers, composed of multi-scalar communities including neighborhoods and districts. Both today and in the past, neighborhoods form a fundamental part of cities and are defined by their spatial, architectural, and material elements. Neighborhoods existed in ancient centers of various scales, and multiple methods have been employed to identify ancient neighborhoods in archaeological contexts. However, the use of different methods for neighborhood identification within the same spatiotemporal setting results in challenges for comparisons within and between ancient societies. Here, we focus on using a single method—combining Average Nearest Neighbor (ANN) and Kernel Density (KD) analyses of household groups—to identify potential neighborhoods based on clusters of households at 23 ancient centers across the Maya Lowlands. While a one-size-fits all model does not work for neighborhood identification everywhere, the ANN/KD method provides quantifiable data on the clustering of ancient households, which can be linked to environmental zones and urban scale. We found that centers in river valleys exhibited greater household clustering compared to centers in upland and escarpment environments. Settlement patterns on flat plains were more dispersed, with little discrete spatial clustering of households. Furthermore, we categorized the ancient Maya centers into discrete urban scales, finding that larger centers had greater variation in household spacing compared to medium-sized and smaller centers. Many larger political centers possess heterogeneity in household clustering between their civic-ceremonial cores, immediate hinterlands, and far peripheries. Smaller centers exhibit greater household clustering compared to larger ones. This paper quantitatively assesses household clustering among nearly two dozen centers across the Maya Lowlands, linking environment and urban scale to settlement patterns. The findings are applicable to ancient societies and modern cities alike; understanding how humans form multi-scalar social groupings, such as neighborhoods, is fundamental to human experience and social organization

    Examining transactional influences between reading achievement and antisocially-behaving friends

    Get PDF
    The association between poorer academic outcomes and having antisocial friends is reliably demonstrated yet not well understood. Genetically sensitive designs uniquely allow for measuring genetic vulnerabilities and/or environmental risk in the association of antisocial friend behavior and poor school achievement, allowing for a better understanding of the nature of the association. This study included 233 pairs of twins from the Florida Twin Project on Reading. First, the role of antisocial friends as an environmental moderator of reading comprehension was examined. Antisocial friends significantly moderated the nonshared environmental variance in reading comprehension, with increased variation at lower levels of association with antisocial friends, with niche-picking indicated. Second, the role of reading comprehension as an environmental moderator of antisocial friends was examined. Reading comprehension significantly moderated the nonshared environmental variance in associating with antisocial friends, with increased variance at lower levels of reading comprehension and indication that common genetic influences contributed to higher reading achievement and better-behaved friends. In total, these results suggested reciprocal influences between reading achievement and antisocially-behaving friends. The impact of antisocial friends appeared to be limited in the extent to which they can undermine reading achievement, and high reading achievement appeared to support less association with antisocial friends

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs
    corecore