35 research outputs found
Recent Results from the VERITAS Collaboration
A decade after the discovery of TeV gamma-rays from the blazar Mrk 421 (Punch et al. 1992), the list of TeV blazars has increased to five BL Lac objects: Mrk 421 (Punch et al. 1992; Petry et al. 1996; Piron et al. 2001), Mrk 501 (Quinn et al. 1996; Aharonian et al. 1999; Djannati-Atai et al. 1999), 1ES2344+514 (Catanese et al. 1998), H1426+428 (Horan et al. 2000, 2002; Aharonian et al. 2002; Djannati-Atai et al. 2002) and 1ES1959+650 (Nishiyama et al. 1999; Konopelko et al. 2002; Holder et al. 2002). In this paper we report results from recent observations of Mrk 421, H1426+428 and 1ES1959+650 using the Whipple Observatory 10 m telescope
Search for Nucleon Decay with Final States l+ eta, nubar eta, and nubar pi+,0 Using Soudan 2
We have searched for nucleon decay into five two-body final states using a
4.4 kiloton-year fiducial exposure of the Soudan 2 iron tracking calorimeter.
For proton decay into the fully visible final states mu+ eta and e+ eta, we
observe zero and one event, respectively, that satisfy our search criteria for
nucleon decay. The lifetime lower limits (tau/B) thus implied are 89 x 10^30
years and 81 x 10^30 years at 90% confidence level. For neutron decay into
nubar eta, we obtain the lifetime lower limit 71 x 10^30 years. Limits are also
reported for neutron decay into nubar pi0, and for proton decay into nubar pi+.Comment: 24 pages, 9 figures, 3 table
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Highlight Talk: Recent Results from VERITAS
VERITAS is a state-of-the-art ground-based gamma-ray observatory that operates in the very high-energy (VHE) region of 100 GeV to 50 TeV. The observatory consists of an array of four 12m-diameter imaging atmospheric Cherenkov telescopes located in southern Arizona, USA. The four-telescope array has been fully operational since September 2007, and over the last two years, VERITAS has been operating with high efficiency and with excellent performance. This talk summarizes the recent results from VERITAS, including the discovery of eight new VHE gamma-ray sources
Review of Particle Physics
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances.
The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings.
The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Review of Particle Physics
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available
Review of Particle Physics: Particle Data Group
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873
new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the
recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical
particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search
limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs
Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology,
Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily
revised, including a new review on Neutrinos in Cosmology.
Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables
and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the
Listings are now included in volume 1.
The complete Review (both volumes) is published online on the website of the Particle Data Group
(http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet
with the Summary Tables and essential tables, figures, and equations from selected review articles is also available
Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period
We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130