89 research outputs found

    Short-term climate response to a freshwater pulse in the Southern Ocean

    Get PDF
    The short-term response of the climate system to a freshwater anomaly in the Southern Ocean is investigated using a coupled global climate model. As a result of the anomaly, ventilation of deep waters around Antarctica is inhibited, causing a warming of the deep ocean, and a cooling of the surface. The surface cooling causes Antarctic sea-ice to thicken and increase in extent, and this leads to a cooling of Southern Hemisphere surface air temperature. The surface cooling increases over the first 5 years, then remains constant over the next 5 years. There is a more rapid response in the Pacific Ocean, which transmits a signal to the Northern Hemisphere, ultimately causing a shift to the negative phase of the North Atlantic Oscillation in years 5–10

    Prediction of iceberg trajectories for the North Atlantic and Arctic Oceans

    Get PDF
    Icebergs are a well-known hazard for shipping. Their study also provides information about diverse geophysical processes, as varied as ocean circulation, air-sea fluxes, calving rates of glaciers or the mass balance of ice sheets. As a first step to obtaining this information from iceberg data we have developed a model of iceberg drift driven by ocean and atmospheric forcing derived from general circulation models. We have applied the drift model to a distribution of typical icebergs released from the main tidewater glaciers of the North Atlantic and Arctic Oceans. We demonstrate that the main driving force of iceberg motion is rooted in the unsteady component of oceanic advection. From simulated trajectories we are able to reproduce the observed southwards limit of iceberg penetration and demonstrate sometimes surprising geographical links between iceberg origin and ultimate melting zones. Copyright 1996 by the American Geophysical Union

    The First Space-Based Gravitational-Wave Detectors

    Get PDF
    Gravitational waves provide a laboratory for general relativity and a window to energetic astrophysical phenomena invisible with electromagnetic radiation. Several terrestrial detectors are currently under construction, and a space-based interferometer is envisioned for launch early next century to detect test-mass motions induced by waves of relatively short wavelength. Very-long-wavelength gravitational waves can be detected using the plasma in the early Universe as test masses; the motion induced in the plasma by a wave is imprinted onto the cosmic microwave background (CMB). While the signature of gravitational waves on the CMB temperature fluctuations is not unique, the polarization pattern can be used to unambiguously detect gravitational radiation. Thus, forthcoming CMB polarization experiments, such as MAP and Planck, will be the first space-based gravitational-wave detectors.Comment: 5 pages, 3 postscript figure

    Modelling twentieth century global ocean circulation and iceberg flux at 48°N: Implications for west Greenland iceberg discharge

    Get PDF
    We have used a coupled ocean-iceberg model to study the variation in global ocean circulation and North Atlantic iceberg flux from 1900 to 2008. The latter component of the study focused particularly on Greenland icebergs feeding into the Labrador Current and past Newfoundland. The model was forced with daily heat, freshwater and wind fluxes from the Twentieth Century Reanalysis. The reanalysis heat fluxes were shown to be offset from the, shorter, NCEP reanalysis and a grid-point correction was applied to this component of the forcing. The model produces a generally realistic ocean circulation, although with an enhanced Atlantic Meridional Overturning largely due to the forcing. The modelled iceberg flux at 48°N is well correlated with the long-term observed flux when using a modelled iceberg discharge that varies in a similar fashion to the highly variable observed flux at 48°N. From this model we infer changes in the spatial and temporal variability of iceberg calving from western Greenland. During the first third of the twentieth century the majority of modelled icebergs reaching 48°N derive from southern Greenland, while only after 1930 is the traditional perspective of a majority of such icebergs originating from Baffin Bay consistent with model results. Decadal-scale changes in the dominant regional sources are found, with oscillations between western Greenland and northern Baffin Bay. The latter origin was modelled to be most important in the last third of the twentieth century, although west Greenland sources have increased in importance in recent years. The model correctly reproduces the pronounced late spring peak in flux at 48°N for southern Greenland icebergs, but has an approximately six month offset for icebergs from Baffin Bay, most likely due to resolution issues leading to model icebergs not being delayed in shallow coastal waters, whereas in reality they may be grounded for some time or trapped in coastal sea-ice. © 2015 The Authors

    Electrical switching of an antiferromagnet

    Get PDF
    Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics

    A Global Model for Iodine Speciation in the Upper Ocean

    Get PDF
    An ocean iodine cycling model is presented, which predicts upper ocean iodine speciation. The model comprises a three-layer advective and diffusive ocean circulation model of the upper ocean and an iodine cycling model embedded within this circulation. The two primary reservoirs of iodine are represented, iodide and iodate. Iodate is reduced to iodide in the mixed layer in association with primary production, linked by an iodine to carbon (I:C) ratio. A satisfactory model fit with observations cannot be obtained with a globally constant I:C ratio, and the best fit is obtained when the I:C ratio is dependent on sea surface temperature, increasing at low temperatures. Comparisons with observed iodide distributions show that the best model fit is obtained when oxidation of iodide back to iodate is associated with mixed layer nitrification. Sensitivity tests, where model parameters and processes are perturbed, reveal that primary productivity, mixed layer depth, oxidation, advection, surface freshwater flux, and the I:C ratio all have a role in determining surface iodide concentrations, and the timescale of iodide in the mixed layer is sufficiently long for nonlocal processes to be important. Comparisons of the modeled iodide surface field with parameterizations by other authors show good agreement in regions where observations exist but significant differences in regions without observations. This raises the question of whether the existing parameterizations are capturing the full range of processes involved in determining surface iodide and shows the urgent need for observations in regions where there are currently none

    Characterisation of extracellular redox enzyme concentrations in response to exercise in humans.

    Get PDF
    Redox enzymes are ubiquitous proteins that modulate intracellular redox balance and can be secreted in response to cellular oxidative stress, potentially modulating systemic inflammation. Both aerobic and resistance exercise are known to cause acute systemic oxidative stress and inflammation; however, how redox enzyme concentrations alter in extracellular fluids following bouts of either type of exercise is unknown. Recreationally active males (n=26, age 28 ± 8 years) took part in either: 1) two separate energy-matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval exercise (HIIE) or 2) a resistance exercise protocol. Alterations in plasma (study 1) and serum (study 2) peroxiredoxin (PRDX)-2, PRDX-4, superoxide dismutase-3 (SOD3), thioredoxin (TRX-1), TRX-reductase and Interleukin (IL)-6 were assessed before and at various timepoints after exercise. There was a significant increase in SOD3 (+1.5 ng/mL) and PRDX-4 (+5.9 ng/mL) concentration following HIIE only, peaking at 30- and 60-min post-exercise respectively. TRX-R decreased immediately and 60-min following HIIE (-7.3 ng/mL) and MOD (-8.6 ng/mL) respectively. In non-resistance trained males, no significant changes in redox enzyme concentrations were observed up to 48 hours following resistance exercise, despite significant muscle damage. IL-6 concentration increased in response to all trials, however there was no significant relationship between absolute or exercise-induced changes in redox enzyme concentrations. These results collectively suggest that HIIE, but not MOD or eccentric exercise increase the extracellular concentration of PRDX-4 and SOD3. Exercise-induced changes in redox enzyme concentration do not appear to directly relate to systemic changes in IL-6 concentration

    Marine iodine emissions in a changing world

    Get PDF
    Iodine is a critical trace element involved in many diverse and important processes in the Earth system. The importance of iodine for human health has been known for over a century, with low iodine in the diet being linked to goitre, cretinism and neonatal death. Research over the last few decades has shown that iodine has significant impacts on tropospheric photochemistry, ultimately impacting climate by reducing the radiative forcing of ozone (O 3) and air quality by reducing extreme O 3 concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O 3 is believed to be the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic O 3, this release of iodine is believed to have increased dramatically over the twentieth century, by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle are, however, major constraints in the effective prediction of how the emissions of iodine and its biogeochemical cycle may change in the future or have changed in the past. Here, we present a synthesis of recent results by our team and others which bring a fresh perspective to understanding the global iodine biogeochemical cycle. In particular, we suggest that future climate-induced oceanographic changes could result in a significant change in aqueous iodide concentrations in the surface ocean, with implications for atmospheric air quality and climate

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
    • 

    corecore