170 research outputs found

    Pharmacogenomics and cancer stem cells: a changing landscape?

    Get PDF
    Pharmacogenomics in oncology holds the promise to personalize cancer therapy. However, its clinical application is still limited to a few genes, and, in the large majority of cancers, the correlation between genotype and clinical outcome has been disappointing. One possible explanation is that current pharmacogenomic studies do not take into account the emerging role of cancer stem cells (CSCs) in drug sensitivity and resistance. CSCs are a subpopulation of cells driven by specific signal-transduction pathways, but genetic variants affecting their activity are generally neglected in current pharmacogenomic studies. Moreover, in several malignancies, CSCs represent a rare sub-population; therefore, whole tumor profiling might mask CSC gene expression patterns. This article reviews current evidence on CSC chemoresistance and shows how common genetic variations in CSC-related genes may predict individual response to anti-cancer agents. Furthermore, we provide insights into the design of pharmacogenomic studies to address the clinical usefulness of CSC genetic profiling

    Prostaglandin E2 and T cells: friends or foes?

    Get PDF
    Our understanding of the key players involved in the differential regulation of T-cell responses during inflammation, infection and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. With respect to this, the inhibitory role of the lipid mediator prostaglandin E2 (PGE2) in T-cell immunity has been documented since the 1970s. Studies that ensued investigating the underlying mechanisms substantiated the suppressive function of micromolar concentrations of PGE2 in T-cell activation, proliferation, differentiation and migration. However, the past decade has seen a revolution in this perspective, since nanomolar concentrations of PGE2 have been shown to potentiate Th1 and Th17 responses and aid in T-cell proliferation. The understanding of concentration-specific effects of PGE2 in other cell types, the development of mice deficient in each subtype of the PGE2 receptors (EP receptors) and the delineation of signalling pathways mediated by the EP receptors have enhanced our understanding of PGE2 as an immune-stimulator. PGE2 regulates a multitude of functions in T-cell activation and differentiation and these effects vary depending on the micro-environment of the cell, maturation and activation state of the cell, type of EP receptor involved, local concentration of PGE2 and whether it is a homeostatic or inflammatory scenario. In this review, we compartmentalize the various aspects of this complex relationship of PGE2 with T lymphocytes. Given the importance of this molecule in T-cell activation, we also address the possibility of using EP receptor antagonism as a potential therapeutic approach for some immune disorders

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    Targeting Cattle-Borne Zoonoses and Cattle Pathogens Using a Novel Trypanosomatid-Based Delivery System

    Get PDF
    Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis

    Exercise and global well-being in community-dwelling adults with fibromyalgia: a systematic review with meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise has been recommended for improving global-well being in adults with fibromyalgia. However, no meta-analysis has determined the effects of exercise on global well-being using a single instrument and when analyzed separately according to intention-to-treat and per-protocol analyses. The purpose of this study was to fill that gap.</p> <p>Methods</p> <p>Studies were derived from six electronic sources, cross-referencing from retrieved studies and expert review. Dual selection of randomized controlled exercise training studies published between January 1, 1980 and January 1, 2008 and in which global well-being was assessed using the Fibromyalgia Impact Questionnaire (FIQ) were included. Dual abstraction of data for study, subject and exercise program characteristics as well as assessment of changes in global well-being using the total score from the FIQ was conducted. Risk of bias was assessed using the Cochrane bias assessment tool. Random-effects models and Hedge's standardized effect size (<it>g</it>) were used to pool results according to per-protocol and intention-to-treat analyses.</p> <p>Results</p> <p>Of 1,025 studies screened, 7 representing 5 per-protocol and 5 intention-to-treat outcomes in 473 (280 exercise, 193 control) primarily female (99%) participants 18-73 years of age were included. Small, statistically significant improvements in global well-being were observed for per-protocol (<it>g </it>and 95% confidence interval, -0.39, -0.69 to -0.08) and intention-to-treat (-0.34, -0.53 to -0.14) analyses. No statistically significant within-group heterogeneity was found (per-protocol, Q<sub>w </sub>= 6.04, <it>p </it>= 0.20, <it>I</it><sup>2 </sup>= 33.8%; intention-to-treat, Q<sub>w </sub>= 3.19, <it>p </it>= 0.53, <it>I</it><sup>2 </sup>= 0%) and no between-group differences for per-protocol and intention-to-treat outcomes were observed (Q<sub>b </sub>= 0.07, <it>p </it>= 0.80). Changes were equivalent to improvements of 8.2% for per-protocol analyses and 7.3% for intention-to-treat analyses.</p> <p>Conclusions</p> <p>The results of this study suggest that exercise improves global well-being in community-dwelling women with fibromyalgia. However, additional research on this topic is needed, including research in men as well as optimal exercise programs for improving global well-being in adults.</p

    A combined computational and experimental investigation of the [2Fe–2S] cluster in biotin synthase

    Get PDF
    Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe–2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe···Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe–2S] clusters. The exceptionally large Fe···Fe distance found in the crystal structure could not be reproduced

    The HAPPY (Healthy and Active Parenting Programmme for early Years) feasibility randomised control trial: acceptability and feasibility of an intervention to reduce infant obesity.

    Get PDF
    The prevalence of infant obesity is increasing, but there is a lack of evidence-based approaches to prevent obesity at this age. This study tested the acceptability and feasibility of evaluating a theory-based intervention aimed at reducing risk of obesity in infants of overweight/obese women during and after pregnancy: the Healthy and Active Parenting Programme for Early Years (HAPPY).A feasibility randomised controlled trial was conducted in Bradford, England. One hundred twenty overweight/obese pregnant women (Body Mass Index [BMI] ≥25 kg/m(2)) were recruited between 10-26 weeks gestation. Consenting women were randomly allocated to HAPPY (6 antenatal, 6 postnatal sessions: N = 59) or usual care (N = 61). Appropriate outcome measures for a full trial were explored, including: infant's length and weight, woman's BMI, physical activity and dietary intake of the women and infants. Health economic data were collected. Measurement occurred before randomisation and when the infant was aged 6 months and 12 months. Feasibility outcomes were: recruitment/attrition rates, and acceptability of: randomisation, measurement, and intervention. Intra-class correlations for infant weight were calculated. Fidelity was assessed through observations and facilitator feedback. Focus groups and semi-structured interviews explored acceptability of methods, implementation, and intervention content.Recruitment targets were met (~20 women/month) with a recruitment rate of 30 % of eligible women (120/396). There was 30 % attrition at 12 months; 66 % of recruited women failed to attend intervention sessions, but those who attended the first session were likely to continue to attend (mean 9.4/12 sessions, range 1-12). Reaction to intervention content was positive, and fidelity was high. Group clustering was minimal; an adjusted effect size of -0.25 standard deviation scores for infant weight at 12 months (95 % CI: -0.16-0.65) favouring the intervention was observed using intention to treat analyses. No adverse events were reported.The HAPPY intervention appeared feasible and acceptable to participants who attended and those delivering it, however attendance was low; adaptations to increase initial attendance are recommended. Whilst the study was not powered to detect a definitive effect, our results suggest a potential to reduce risk of infant obesity. The evidence reported provides valuable lessons to inform progression to a definitive trial.Current Controlled Trials ISRCTN56735429

    Integrating Signals from the T-Cell Receptor and the Interleukin-2 Receptor

    Get PDF
    T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells

    Inactivation of VCP/ter94 Suppresses Retinal Pathology Caused by Misfolded Rhodopsin in Drosophila

    Get PDF
    The most common Rhodopsin (Rh) mutation associated with autosomal dominant retinitis pigmentosa (ADRP) in North America is the substitution of proline 23 by histidine (RhP23H). Unlike the wild-type Rh, mutant RhP23H exhibits folding defects and forms intracellular aggregates. The mechanisms responsible for the recognition and clearance of misfolded RhP23H and their relevance to photoreceptor neuron (PN) degeneration are poorly understood. Folding-deficient membrane proteins are subjected to Endoplasmic Reticulum (ER) quality control, and we have recently shown that RhP23H is a substrate of the ER–associated degradation (ERAD) effector VCP/ter94, a chaperone that extracts misfolded proteins from the ER (a process called retrotranslocation) and facilitates their proteasomal degradation. Here, we used Drosophila, in which Rh1P37H (the equivalent of mammalian RhP23H) is expressed in PNs, and found that the endogenous Rh1 is required for Rh1P37H toxicity. Genetic inactivation of VCP increased the levels of misfolded Rh1P37H and further activated the Ire1/Xbp1 ER stress pathway in the Rh1P37H retina. Despite this, Rh1P37H flies with decreased VCP function displayed a potent suppression of retinal degeneration and blindness, indicating that VCP activity promotes neurodegeneration in the Rh1P37H retina. Pharmacological treatment of Rh1P37H flies with the VCP/ERAD inhibitor Eeyarestatin I or with the proteasome inhibitor MG132 also led to a strong suppression of retinal degeneration. Collectively, our findings raise the possibility that excessive retrotranslocation and/or degradation of visual pigment is a primary cause of PN degeneration
    • …
    corecore