853 research outputs found

    A technological analysis of cryptocrystalline silicate bladelets from Holkrans Rock Shelter in the Vredefort Dome, North West Province, South Africa.

    Get PDF
    BSc Honours Research Report in ArchaeologyBreaking from traditional typological classification, this project utilizes the principle of chaîne opératoire to conduct a technological analysis of a sample of cryptocrystalline silicate (CCS) cores, bipolar debitage and, blade and bladelets from Holkrans rock shelter in the Vredefort Dome, North West Province. Approaches to lithic material of the Later Stone Age in southern Africa have been predominantly typological, with a few recent studies focused on technological analysis. Holkrans rock shelter presents an opportunity to conduct a technological analysis in an area abundant with rock types that complicate standard typology. Chaîne opératoire is employed to understand how cores were reduced and the processes and techniques that were used to produce blades and bladelets within the chert-dominated CCS sample. Previous research at Holkrans noticed differences in the occurrence of various raw materials across the two occupational horizons (ceramic and pre-ceramic), and suggested possible differences in technology between the two phases (Bradfield & Sadr 2011; Banhegyi 2011). Analysis of chert and opaline raw material types in the present study revealed substantial differences in lithic technology moving from the pre-ceramic across to the ceramic phase. A major shift in the overall knapping technique occurred as the result of a change in the objectives of the reduction strategy.National Research Foundatio

    Topography of the Chimpanzee Corpus Callosum

    Get PDF
    The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures

    Labyrinthine Turing Pattern Formation in the Cerebral Cortex

    Get PDF
    I propose that the labyrinthine patterns of the cortices of mammalian brains may be formed by a Turing instability of interacting axonal guidance species acting together with the mechanical strain imposed by the interconnecting axons.Comment: See home page http://lec.ugr.es/~julya

    Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI

    Get PDF
    Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level

    Corpus Callosum Morphology in Capuchin Monkeys Is Influenced by Sex and Handedness

    Get PDF
    Sex differences have been reported in both overall corpus callosum area and its regional subdivisions in humans. Some have suggested this reflects a unique adaptation in humans, as similar sex differences in corpus callosum morphology have not been reported in any other species of primate examined to date. Furthermore, an association between various measurements of corpus callosum morphology and handedness has been found in humans and chimpanzees. In the current study, we report measurements of corpus callosum cross-sectional area from midsagittal MR images collected in vivo from 14 adult capuchin monkeys, 9 of which were also characterized for hand preference on a coordinated bimanual task. Adult females were found to have a significantly larger corpus callosum: brain volume ratio, rostral body, posterior midbody, isthmus, and splenium than adult males. Left-handed individuals had a larger relative overall corpus callosum area than did right-handed individuals. Additionally, a significant sex and handedness interaction was found for anterior midbody, with right-handed males having a significantly smaller area than right-handed females. These results suggest that sex and handedness influences on corpus callosum morphology are not restricted to Homo sapiens

    Detail-oriented cognitive style and social communicative deficits, within and beyond the autism spectrum: independent traits that grow into developmental interdependence

    Get PDF
    At the heart of debates over underlying causes of autism is the "Kanner hypothesis" that autistic deficits in social reciprocity, and a cognitive/perceptual 'style' favouring detail-oriented cognition, co-vary in autistic individuals. A separate line of work indicates these two domains are normally distributed throughout the population, with autism representing an extremity. This realisation brings the Kanner debate into the realm of normative co-variation, providing more ways to test the hypothesis, and insights into typical development; for instance, in the context of normative functioning, the Kanner hypothesis implies social costs to spatial/numerical prowess

    Transcallosal sensorimotor fiber tract structure‐function relationships

    Full text link
    Recent studies have demonstrated neuroanatomically selective relationships among white matter tract microstructure, physiological function, and task performance. Such findings suggest that the microstructure of transcallosal motor fibers may reflect the capacity for interhemispheric inhibition between the primary motor cortices, although full characterization of the transcallosal inhibitory sensorimotor network is lacking. Thus, the goal of this study was to provide a comprehensive description of transcallosal fibers connecting homologous sensorimotor cortical regions and to identify the relationship(s) between fiber tract microstructure and interhemispheric inhibition during voluntary cortical activity. To this end, we assessed microstructure of fiber tracts connecting homologous sensorimotor regions of the cortex with diffusion tensor imaging. We also assessed interhemispheric inhibition by eliciting the ipsilateral silent period (iSP) within the same participants. We mapped mutually exclusive transcallosal connections between homologous sensorimotor regions and computed quantitative metrics of each fiber tract. Paralleling work in non‐human primates, we found the densest interhemispheric sensorimotor connections to be between the medial motor areas. Additionally, we provide a midsagittal callosal atlas in normalized Montreal Neurological Institute (MNI) space for future studies to use when investigating callosal fiber tracts connecting primary and secondary sensorimotor cortices. Finally, we report a strong, positive relationship ( r = 0.76) between strength of interhemispheric inhibition (iSP) and microstructure of interhemispheric fibers that is specific to tracts connecting the primary motor cortices. Thus, increased fiber microstructure in young adults predicts interhemispheric inhibitory capacity. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96360/1/21437_ftp.pd
    corecore