1,930 research outputs found

    Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture

    Get PDF
    Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture

    Mathematical modelling of nanoparticle delivery to vascular tumours

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The goal of any cancer therapy is to achieve efficient, tissue-specific targeting of drugs to cancer cells. However, most anticancer agents act on healthy and malignant tissue alike, potentially resulting in side effects to healthy tissue. This has motivated the development of treatment strategies that are cancer-cell specific; one approach uses biomimetic polymer vesicles (BPV) to deliver chemotherapeutic drugs into cells before releasing them. BPVs are synthetic membrane enclosed, nanometre-sized structures, and provide ideal drug delivery vectors because specific targeting to cancer cells can be achieved by coating with tumourspecific molecules. We present several mathematical models covering a wide range of length-scales pertinent to BPV-mediated delivery protocols and focus on capturing the in vivo environment by evaluating the impact of the underlying vascular structure upon the governing transport mechanisms. Firstly, we present models of specific binding of BPVs to cancer cells. Subsequently we examine the implications of these model outputs in the contexts of both discrete capillary architectures and higher level homogenized-models that track blood and BPV transport at the tissue scale (both intra- and extra-tumorally). Numerical solutions are discussed, and recommendations are presented on that optimal integration of the models to generate quantitative predictions associated with BPV treatment efficacy

    A combined in vitro/in silico approach to identifying off-target receptor toxicity

    Get PDF
    Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of downstream transcription factors. Identification of subsequent off-target toxicity in these chemicals has often required extensive chemical testing in animal models. An alternative, integrated in vitro/in silico approach for predicting toxic off-target functional responses is presented to refine in vitro receptor identification and reduce the burden on in vivo testing. As part of the methodology, mathematical modelling is used to mechanistically describe processes that regulate transcriptional activity following receptor-ligand binding informed by transcription factor signalling assays. Critical reactions in the signalling cascade are identified to highlight potential perturbation points in the biochemical network that can guide and optimise additional in vitro testing. A physiologically-based pharmacokinetic model provides information on the timing and localisation of different levels of receptor activation informing whole-body toxic potential resulting from off-target binding

    Tuberculosis incidence correlates with sunshine : an ecological 28-year time series study

    Get PDF
    Birmingham is the largest UK city after London, and central Birmingham has an annual tuberculosis incidence of 80 per 100,000. We examined seasonality and sunlight as drivers of tuberculosis incidence. Hours of sunshine are seasonal, sunshine exposure is necessary for the production of vitamin D by the body and vitamin D plays a role in the host response to tuberculosis. Methods: We performed an ecological study that examined tuberculosis incidence in Birmingham from Dec 1981 to Nov 2009, using publicly-available data from statutory tuberculosis notifications, and related this to the seasons and hours of sunshine (UK Meteorological Office data) using unmeasured component models. Results: There were 9,739 tuberculosis cases over the study period. There was strong evidence for seasonality, with notifications being 24.1% higher in summer than winter (p<0.001). Winter dips in sunshine correlated with peaks in tuberculosis incidence six months later (4.7% increase in incidence for each 100 hours decrease in sunshine, p<0.001). Discussion and Conclusion: A potential mechanism for these associations includes decreased vitamin D levels with consequent impaired host defence arising from reduced sunshine exposure in winter. This is the longest time series of any published study and our use of statutory notifications means this data is essentially complete. We cannot, however, exclude the possibility that another factor closely correlated with the seasons, other than sunshine, is responsible. Furthermore, exposure to sunlight depends not only on total hours of sunshine but also on multiple individual factors. Our results should therefore be considered hypothesis-generating. Confirmation of a potential causal relationship between winter vitamin D deficiency and summer peaks in tuberculosis incidence would require a randomized-controlled trial of the effect of vitamin D supplementation on future tuberculosis incidence

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland

    Get PDF
    Factor H autoantibodies can impair complement regulation, resulting in atypical hemolytic uremic syndrome, predominantly in childhood. There are no trials investigating treatment, and clinical practice is only informed by retrospective cohort analysis. Here we examined 175 children presenting with atypical hemolytic uremic syndrome in the United Kingdom and Ireland for factor H autoantibodies that included 17 children with titers above the international standard. Of the 17, seven had a concomitant rare genetic variant in a gene encoding a complement pathway component or regulator. Two children received supportive treatment; both developed established renal failure. Plasma exchange was associated with a poor rate of renal recovery in seven of 11 treated. Six patients treated with eculizumab recovered renal function. Contrary to global practice, immunosuppressive therapy to prevent relapse in plasma exchange–treated patients was not adopted due to concerns over treatment-associated complications. Without immunosuppression, the relapse rate was high (five of seven). However, reintroduction of treatment resulted in recovery of renal function. All patients treated with eculizumab achieved sustained remission. Five patients received renal transplants without specific factor H autoantibody–targeted treatment with recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate eculizumab therapy for treatment of factor H autoantibody–mediated atypical hemolytic uremic syndrome rather than plasma exchange with or without immunosuppression. Based on this retrospective analysis we see no suggestion of inferior treatment, albeit the strength of our conclusions is limited by the small sample siz

    A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity

    Get PDF
    BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up

    Translating clinicians' beliefs into implementation interventions (TRACII) : a protocol for an intervention modeling experiment to change clinicians' intentions to implement evidence-based practice

    Get PDF
    Background: Biomedical research constantly produces new findings, but these are not routinely incorporated into health care practice. Currently, a range of interventions to promote the uptake of emerging evidence are available. While their effectiveness has been tested in pragmatic trials, these do not form a basis from which to generalise to routine care settings. Implementation research is the scientific study of methods to promote the uptake of research findings, and hence to reduce inappropriate care. As clinical practice is a form of human behaviour, theories of human behaviour that have proved to be useful in other settings offer a basis for developing a scientific rationale for the choice of interventions. Aims: The aims of this protocol are 1) to develop interventions to change beliefs that have already been identified as antecedents to antibiotic prescribing for sore throats, and 2) to experimentally evaluate these interventions to identify those that have the largest impact on behavioural intention and behavioural simulation. Design: The clinical focus for this work will be the management of uncomplicated sore throat in general practice. Symptoms of upper respiratory tract infections are common presenting features in primary care. They are frequently treated with antibiotics, and research evidence is clear that antibiotic treatment offers little or no benefit to otherwise healthy adult patients. Reducing antibiotic prescribing in the community by the "prudent" use of antibiotics is seen as one way to slow the rise in antibiotic resistance, and appears safe, at least in children. However, our understanding of how to do this is limited. Participants will be general medical practitioners. Two theory-based interventions will be designed to address the discriminant beliefs in the prescribing of antibiotics for sore throat, using empirically derived resources. The interventions will be evaluated in a 2 × 2 factorial randomised controlled trial delivered in a postal questionnaire survey. Two outcome measures will be assessed: behavioural intention and behavioural simulation.This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
    corecore