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Abstract The goal of any cancer therapy is to achieve efficient, tissue-specific targeting of drugs to cancer 
cells. However, most anticancer agents act on healthy and malignant tissue alike, potentially resulting in side 
effects to healthy tissue. This has motivated the development of treatment strategies that are cancer-cell 
specific; one approach uses biomimetic polymer vesicles (BPV) to deliver chemotherapeutic drugs into cells 
before releasing them. BPVs are synthetic membrane enclosed, nanometre-sized structures, and provide ideal 
drug delivery vectors because specific targeting to cancer cells can be achieved by coating with tumour-
specific molecules. 
 
We present several mathematical models covering a wide range of length-scales pertinent to BPV-mediated 
delivery protocols and focus on capturing the in vivo environment by evaluating the impact of the underlying 
vascular structure upon the governing transport mechanisms. Firstly, we present models of specific binding 
of BPVs to cancer cells. Subsequently we examine the implications of these model outputs in the contexts of 
both discrete capillary architectures and higher level homogenized-models that track blood and BPV 
transport at the tissue scale (both intra- and extra-tumorally). Numerical solutions are discussed, and 
recommendations are presented on that optimal integration of the models to generate quantitative predictions 
associated with BPV treatment efficacy. 
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1. Introduction 
 
Biomimetic polymer vesicles (BPV) are 
membrane enclosed, nanometre-sized, 
structures composed of synthetic amphiphilic 
block copolymer (See Figure 1) [3]. BPV are 
self-assembled at neutral pH from synthesized 
amphilic copolymers that mimic the 
membrane forming ability of phospholipids 
[4]. They are similar to liposomes, which use 
naturally occurring lipids, but their wholly 
synthetic nature means that BPV can exhibit 
increased stability and reduced permeability 
[5,6]. Furthermore, vesicle stability is largely 
unaffected by surface coating with molecules, 
such as polyethyleneglycol (PEG), that 
improve the BPV  ‘stealth’ properties and 
circulation time [3].  

 
The purpose of this work is to use theoretical 
models to assess the feasibility of using BPVs 
to deliver chemotherapeutic drugs into cells 
before releasing them. Mathematical models 
will be used to address important questions 
relating to the infiltration of BPVs into 
tumours, their selective targeting of cancer 
cells and their mechanism of action once they 
reach the tumour. 
 
The use of BPVs in cancer treatment has 
evolved from a previous treatment of targeting 
liposomes (containing anti-cancer drugs) to 
cancer cells.  Liposomes are nanometer-sized 
vesicles that occur naturally in our cells, and 
have a lipid bilayer structure. These 
membranes are amphiphilic, and so contain a 
hydrophilic head and hydrophobic tail. 
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Figure 1: Biomimetic polymer vesicle which can 
encapsulate genes, drugs etc (picture courtesy of 
Giuseppe Battaglia, University of Sheffield). 
 
Treatment using targeted liposomes was 
limited as they were leaky, could not be 
targeted efficiently and were quickly removed 
from the blood by the reticulondothelial 
system (immune system) [4].  BPVs on the 
other hand are completely synthetic, and so 
can be made with different properties by 
changing the composition of the polymers.  
Similar in structure to a liposome, BPVs are 
nanometer-sized spherical vesicles with an 
amphiphilic bilayer that self-assembles when 
the pH is raised (i.e. by adding water).  
During assembly drugs (such as chemotherapy 
agents) or DNA can be encapsulated. 
 
The BPVs are assumed to be taken up by cells 
by receptor mediated endocytosis. This 
process involves receptors on the cell surface 
binding (reversibly) to specific ligands that are 
also located on the BPV surface. The cell 
membrane will then deform, creating a pit that 
allows more interactions between receptors 
and ligands.  The membrane will encapsulate 
the BPV, and pinch off creating an organelle, 
an endosome.  Due to the pH sensitive nature 
of the polymer, when the BPV is within the 
acidic endosome the vesicle will de-
polymerize and release the payload 
(therapeutic drugs or DNA).  
  
Treatment using BPVs has significant 
potential. However, there are still a number of 
outstanding questions: (1) what is the optimal 
number of ligands for BPV uptake? (2) what is 
the optimal diameter of the BPVs? (3) will 
unspecific uptake affect the quality of the 
treatment/surrounding cells? (4) how do BPV 

distribute through a tumour, and how should 
this impact BPV design? We address some of 
these issues in this paper. 
 
2. BPV Binding Model 
 
Firstly, we present a mathematical model of 
the binding of BPVs to cancer cells, via 
specific ligand/receptor interactions and 
endocytosis. The model is a system 
comprising of n+5 ODEs, where n is the 
maximum number of (ligand:receptor) bonds 
that can be made between ligands on the BPV 
surface and receptors on the surface of the cell.   
 
We let V(t) be the total density of free BPVs 
per volume, and we define L(t)=V(t)/l, where l 
is the (fixed) mol of ligands per BPV. The rate 
of change of L(t) over time can be written as 

 

where ka is the binding association rate 
constant and kd is the dissociation rate.  The 
first term represents binding of BPVs to the 
cell (forming a single bound ligand:receptor 
complex), and the second is the total 
dissociation rate of bound complexes, where 
Bj(t) represents the concentration of BPVs 
bound by j ligand:receptor bonds.   The rate 
equation for the concentration of single bound 
complexes is given by: 
 

€ 

dB1

dt
= kaLF − kdB

1 − ka{ρl lNA −1}ρ f FB
1

         − kiB
1 + 2kdB

2,
 

 
where the first term represents the initial 
binding of receptor to ligand and the second 
term is the dissociation rate of that bond.  The 
third term represents the formation of a 
complex with 2 bonds, where ρl and ρf are the 
proportion of ligands and receptors on the 
BPV and cell, respectively, that are available 
for subsequent binding (this is determined by 
the tether length of the ligand and clustering 
rate of receptors etc.).  The fourth term 
represents the internalization of the BPV (with 
an assumed constant rate ki) and the fifth term 
arises from the dissociation of a 
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ligand:receptor complex from a double 
ligand:receptor bound BPV. Generalizing this 
expression for i bonds, Bi(t), yields 
 

 

Here, i=2,…,n-1, where n is the maximum 
number of bonds that can form (n≤ρlNA).  The 
equation for the concentration of BPVS bound 
by n bonds, Bn(t), is given by 
 

 

 
Associated with this binding, the concentration 
of free receptors per volume, F(t), changes 
according to 
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dF
dt

= −ka{LF + (ρl lNA − j)ρ f FB
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j=1

n
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         + kd jB j
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n

∑ − d f F + f (btot )M,
 

 
 

Table 1 Parameter values 

  
where,  

€ 

f (btot ) = c1 +
c2btot

α

c3
α + btot

α  and 

€ 

btot = 1
M B j

j=1

n

∑ . 

The first term in the F-equation represents the 
loss of free receptors due to complex 
formation with BPV bound ligands, the second 
term denotes the freeing up of receptors after 
dissociation, the third term represents the 
natural half-life of receptors and the fourth 
term represents receptor production feedback 
which we assume is an increasing function of 
the total number of bound complexes.  
 
The equation for internalized BPVs per 
volume, Bin(t), is given by, 

 

 

 
The linear decay represented by the second 
term denotes the lysing of BPVs within an 
acidic endosomal vacuole. When the BPVs 
lyse, they then release their payload.  In our 
case this is a therapeutic drug, P(t). We thus 
have 
 

€ 

dP
dt

=υdbB
in − dpP. 

 
Here, υ represents the concentration of drug 
encapsulated in each vesicle (mol/vesicle) and 
dp is the drug half-life. 
  
Finally we have the equation for the tumour 
cell density, M(t),  
 

 

€ 

dM
dt

= rM 1− M
K

 

 
 

 

 
 − g(ρ)M, 

  And  
where we assume a logistic growth (with 
intrinsic proliferation rate r and carrying 
capacity K), and a linear removal rate due to 
the BPV-drug treatment. We take  

 

€ 

g(ρ) = dm +
µρβ

P0
β + ρβ , where 

€ 

ρ =
P
M
.  

 
We parameterize this model by using rate 

Parameter Dimensional Value 
ka 3.7101x108 cm3mol-1min-1  
kd 3.7101x10-5 min-1 
ki 0.05 min-1  
ρl (0,1] 
ρf (0,1] 
l 1200 mol vesicle-1 

c1 0 min-1cell-1mol 
c2 0.03 min-1cell-1mol 

c3 0.5 mol cell-1 

df 0.03 min-1  
α 1 
υ 8.3x10-16 vesicle mol-1 

db 0.01 min-1 

dp 1.2 min-1  
β 1  
NA 6.022x1023 mol-1 

µ 1.2 min-1 
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constants associated with the analogous 
liposome treatment using folate receptor 
targeting (see, for example, [7]). Table 1 
illustrates a base set of parameter values.  
 
3. Analysis of the BPV Binding Model 
 
In Figure 2, we show a typical numerical 
simulation of the ODE system described above. 
In this example, we take the maximum number 
of ligand:receptor bonds to be 20.  
 

 
Figure 2 (a) – (e) shows tumour density, free BPVs, 
internalized BPVs, free receptors and drug per cell 
respectively over 24 hours.  In (f), the ith bar represents 
vesicles bound by i bonds. We take ρl = ρf = 0.5. 
 
Over time, the free-BPVs bind to the available 
free-receptors on the cell surface, subsequent 
multiple binding then occurs (although, we 
notice that with this parameter set the BPVs 
are generally internalized rapidly after 4 
binding events), the internalized BPVs then 
shed their drug load, within acidic endosomal 
vacuoles, which kills the tumour cells and the 
overall tumour density decreases.  
 
Typically, we observe a fast transition in the 
free receptor solution as receptors are quickly 
bound by ligand on the infiltrating polymer 
vesicles. A singular perturbation analysis in 
the single binding case, with the number of 
ligands per vesicle being the large parameter 
controlling the perturbation, yields realistic 
approximation solutions and sheds insight into 
the solution behaviours during/and after this 
quick transition (details omitted for brevity). 
 

We also examine the effect of receptor 
clustering and ligand tether length. We explore 
these effects by varying the parameters ρf and 
ρl between 0 and 1: 0 denoting the zero 
clustering case/short tether length and 1 
denoting high receptor clustering/long tether 
length, for ρf  and ρl, respectively. Figure 3 
shows an example of the simulation results. 
 

 
Figure 3 Effects of varying ρl, ρf on (top left) bound 
BPVs/cell, (top right) internalized BPVs/cell, (bottom 
left) released drug concentration/cell and (bottom right) 
tumour cell density/cm3.  
 
An unexpected result from this parameter 
sensitivity analysis is that increasing receptor 
clustering and tether length (in effect, 
increasing the availability of 2-dimensional 
surface bonds) reduces the efficiency of the 
treatment. This result stems from the fact that, 
in our model, multiple binding events tend to 
delay BPV internalization and thus drug 
release. It is important to note, however, that 
the precise mechanisms of BPV internalization 
is largely unknown and other modes of 
endocytosis does exist, such as there being 
some optimal number of bonds for 
internalization and, as you’d expect these 
modes do indeed yield quantitatively differing 
results (not shown).   
 
4. Implications of Vascular Architecture 
upon BVP Delivery. 
Whilst it is clearly vitally important to 
examine the intricacies associated with BVP 
binding, there is also a need to understand the 
way in which these particles are transported in 
vivo. To this end, we have investigated a 



2nd Micro and Nano Flows Conference 
West London, UK, 1-2 September 2009 

- 5 - 

number of issues associated with perfusion at 
the tissue scale (both intra- and extra-
tumorally).  We begin with a discussion of 
BVP transport within discrete capillaries 
feeding a solid tumour.  
 
4.1 Discrete Vascular Growth 
Flow modelling in a tumour-induced capillary 
network has been considered previously in 
papers by McDougall et al [10,11] and 
Stéphanou et al. [14,15]. In these papers, flow 
through vascular networks was modelled in 
order to investigate the efficiency of 
chemotherapy treatments as they passed from 
parent vessel to tumour surface via an 
associated capillary bed. The capillary bed was 
generated from an angiogenesis model 
proposed in [1] and vascular growth was 
described by a discrete formulation of the 
associated set of partial differential equations. 
This model has been adapted to consider BVP 
transport from 2 bounding parent vessels, with 
BVP concentration being monitored as blood 
flows both towards the tumour periphery and 
within the tumour mass itself. 
 
Figure 4 shows the time evolution of BVP 
concentration following a 150 second bolus 
injection into two feeder vessels at 
concentration Cmax (BPVs enter from left to 
right). At each timestep, the total number of 
BVPs flowing into capillary junction (node) 
was calculated and BVP concentrations for all 
outflowing capillaries were updated via flow-
weighted partitioning of the available BVP 
mass.  
 
Tumour vasculature is intrinsically less well 
connected compared to that characterizing the 
peripheral capillary bed and is also extremely 
leaky. The snapshots in Figure 4 clearly show 
that perfusion rates are low at the tumour site 
and demonstrate how poor vessel connectivity 
within the tumour mass can lead to long 
residency times for any BPVs that reach the 
target. Subsequent BPV extravasation into the 
host tissue can also be monitored (Figure 5) 
and future work will focus upon coupling this 
tissue-scale model to BVP binding 
mechanisms and associated cell biology. 

 

 
Figure 4: Simulated history of BPVs into vasculature 
surrounding centralized tumour: red = high BPV 
concentration, light blue = low BPV concentration. 
 

 
Figure 5: Transmural BPV transport from leaky tumour 
vasculature into tumour mass; pink = high extravasated 
concentration, green = low extravasated concentration. 
 
 
4.2 Homogenization Approach 
An alternative approach to predicting in vivo 
fluid and species perfusion is by simulating 
continuum models on the tissue-scale. These 
models must capture the vascular structure, 
and this may be achieved by using asymptotic 
homogenization to derive them. 
Homogenization has been applied to both fluid 
and species transport in vascular tumours 
[2.13]. Most pertinent to the modelling here is 
[13], where a model for fluid and drug 
transport through the leaky neo-vasculature 
and porous interstitium of a solid tumour is 
developed. The transport problems are posed 
on a micro-scale characterized by the inter-
capillary distance, and the method of multiple 
scales is used to derive the continuum 
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equations describing fluid and drug transport 
on the length scale of the tumour. The fluid 
equations comprise a double porous medium, 
with coupled Darcy flow through the 
interstitium and vasculature, whereas the drug 
equations comprise advection-reaction 
equations; in each case the dependence of the 
transport coefficients on the vascular geometry 
is determined by solving micro-scale cell 
problems. The analysis is performed for a wide 
range of species transport properties, under the 
assumption of a periodic tumour 
microstructure.  
 
The multiscale models of [13] are extended to 
capture the hierarchical vascular structure of 
dorsal skinfold chambers in [14]. Dorsal 
skinfold chambers are observation chambers 
that are implanted into an animal for intravital 
microscopy of the living tissue, and are widely 
used to test new anticancer agents before they 
reach the clinic. Once the tumour xenograft is 
transferred to the chamber, a fine catheter is 
inserted into the jugular vein and the carotid 
artery, passed subcutaneously to the dorsal 
side of the neck, closed, and stitched to the 
chamber frame. Angiogenesis occurs to 
vascularize the tissue from the seeded vein and 
artery; the resulting microvasculature is 
categorized in terms of arterioles, capillaries 
and venules. The arterioles and venules are 
larger than the capillaries, and connect directly 
to the seeded artery or vein, respectively; the 
capillary bed connects the arterioles to the 
venules, and hosts transfer of agents to the 
tumour interstitium. Example data on the 
arteriole, capillary and venule diameters, and 
the intercapillary distance for nude mice and 
hamsters are presented in Table 2.  
 

Measurement (µm) Nude Mice 
[9] 

Hamsters 
[8] 

Arteriole Diameter 37.4 ± 12.8 42.2 ± 14.1 
Capillary Diameter 5.6 ± 1.8 6.1 ± 1.4 
Venule Diameter 41.5 ± 10.6 46.5 ± 13.0 

Intercapillary Distance 37 ± 15 54 ± 28 
Table 2: Arteriole, capillary and venule diameters, and 
intercapillary distances in dorsal skinfold chambers in 
nude mice and hamsters. 
 
The final fluid transport equations of [14] 

comprise a quadruple porous medium with 
coupled Darcy flow through the arterioles, 
venules, capillary bed and interstitium. The 
drug transport equations comprise coupled 
advection-reaction equations for the total 
species concentration in each of the four 
domains. Here we apply precisely the same 
models to predict the perfusion of BPVs in a 
dorsal skinfold chamber. We investigate two 
delivery protocols: delivery by a single 
injection, and delivery by constant perfusion. 
 
In each case, we solve the chamber-scale 
models of [14] using the finite elements 
package ‘COMSOL Multiphysics’ on the 2D 
domain shown by Figure 4. The chamber is 
represented by a unit square with a central 
circle of malignant tissue; a source artery and 
sink vein are seeded in the same position, to 
one edge of the malignant tissue. A key 
ingredient of the models we use is that the 
explicit dependence of the transport 
coefficients on the vascular geometry is known. 
We assume that the arterioles and venules 
have the same regular structure, but test four 
different vascular structures for the capillaries. 
The four different vascular structures are 
shown in Figures 5-8. The first, Figure 5, 
represents a grid network, whilst Figure 6 
takes a hexagonal structure. This hexagonal 
structure is also used for the arterioles and 
venules, and the capillaries in the healthy 
tissue. Figures 7-8 represent two more 
irregular (and arbitrary) networks that may be 
more realistic to malignant capillary 
morphology; we refer to them as ‘irregular-I’ 
and ‘irregular-II’ respectively. 
 

 
Figure 6: The chamber structure as drawn in COMSOL. 
The chamber is a square with a central circle of 
malignant tissue, surrounded by healthy tissue. A source 
artery and sink vein are seeded in the malignant section. 

Seeded Artery
and Vein

Healthy

Malignant

Tissue

Tissue



2nd Micro and Nano Flows Conference 
West London, UK, 1-2 September 2009 

- 7 - 

 
Figure 7: The periodic grid vascular structure. 
 

 
 
Figure 8: The periodic hexagonal vascular structure. 
 
 

Figure 9: The periodic ‘irregular-I’ vascular structure 
 

 
Figure 10: The periodic ‘irregular-2’ vascular structure 
 

 
4.2.1 Single Injection 
For an injection, we test an initial dose of BPV 
of ≈2700 nM. This dose will be metabolized in 
the bloodstream as time progresses. We follow 
the protocol for vinblastine (an anticancer 
drug), which assumes that this metabolism 
occurs over four phases [12]; an initial fast 
phase that represents the distribution of the 
blood through the body, and three further slow 
phases representing the redistribution and 
metabolism of the drug in different organs of 
the body. This can be represented 
mathematically by the function 

€ 

σ(t) = Ae−k1t + Be−k2t + Ce−k3t + De−k4 t , 
where k1=41.6 min-1, k2=0.17 min-1, 
k3=1.3×10-2 min-1 and k4=5.9×10-4 min-1 
represent the half lives of the four separate 
phases, and A, B, C, D are constants 
determined for a specific individual (we use 
A=1557nM, B=862nM, C=261nM and 
D=20nM). The function σ(t) is used as a 
boundary condition on the total arteriole BPV 
concentration on the seeded artery wall. 
 
The total BPV concentration in the arterioles, 
venules, capillary bed and interstitium in the 
malignant tissue is given by 

 
The total concentration of BPVs in the 
interstitium is pertinent to assessing BPV 
delivery; this is presented as a function of time, 
and for a single injection, in Figure 11. 

 
Figure 11: Total BPV concentration in the interstitium, 
as a function of time, and for a single injection (nM). 
 
4.2.2 Constant Perfusion 
 
For constant perfusion of BPVs, a constant 
concentration of BPVs will be maintained in 
the bloodstream for a longer period of time. 
We consider an indicative value of 8nM 

Capillaries

Interstitium

the initial dose condition, σ (0) = 2700nM, together with
three further conditions on the level of metabolism after
each phase’s half life [35]. For a person of weight 64kg
(and blood volume ≈ 4.4 litres ) these conditions are

σ (t = 4min) = 700nM , (89)

σ (t = 53min) = 150nM , (90)

σ (t = 1173min) = 10nM . (91)

This yields A = 1557nM, B = 862nM, C = 261nM, and
D = 20nM. The resulting function σ (t) is plotted in Figure
4.

Treatment through Constant Perfusion. An alternative regime
involves maintaining a constant concentration of vinblas-
tine in the bloodstream over a longer time period. To
limit damage to the patient, the achievable concentration
is lower than the initial injection concentration; indicative
values are a concentration of 8nM applied constantly to
the patient over a period of 5 days [8]. The boundary
condition on the arteriole wall is therefore

σ (t) =

{

8nM for 0 ≤ t ≤ 120 hours
0 for t > 120 hours

. (92)

This boundary condition can be captured using a ‘smoothed’
Heaviside function, where the smoothing occurs in a small
region around t = 120 hours and acts to ensure the first
derivative of the function is continuous here. This aids the
stability of finite element method, and ensures convergence
of the solution.

For this administration technique, the concentration of
vinblastine in the bloodstream is initially lower than for a
single injection. However, after a single injection the injec-
tion falls to 8nM by around 24 hours, and then continues
to fall, and so for constant perfusion the concentration in
the bloodstream is higher for the final four days.

4.3. Investigation of Vinblastine Concentration

Using the chamber-scale models that have been derived
thus far, it is possible to test whether treatment through
a single injection or constant perfusion is more efficient
at killing tumour cells in a dorsal skinfold chamber. The
unknown parameters in the drug transport model are Υa
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Figure 5: The cell kill rate of vinblastine, as given by equation (94).

and Υv (these are not measured experimentally). We pick
values of Υa = Υv = 10−5 which give realistic results.
However, these parameters should be determined by vali-
dation against clinical data or full scale numerical solutions
in future.

For each of the concentrations of vinblastine in the ar-
terioles, venules, capillaries and interstitium, we evaluate
the total concentration in the malignant section, given by
the integral of each of these components over the malig-
nant domain,

ĉtot
i =

1

Volume of Malignant Domain

∫

Malignant Domain

ĉi dV.

(93)
We present data on the evolution of ĉtot

i in time for i =
a, v, c, t. For the simulations in this paper, the dimension-
less volume of the malignant domain was 0.263976.

In addition, we evaluate the cell kill rate as a conse-
quence of the vinblastine treatment. A functional form
for this cell kill rate, Mc, may be determined as follows.
The maximum killing rate is 1/24 hours−1 [38], and the
concentration of vinblastine required to kill cells at the
half-maximal kill rate is 2nM [11, 42]. Also, the cell kill
rate is proportional to concentration for low drug concen-
trations. Therefore, we assume that the cell-kill rate, Mc,
takes the form

Mc (ĉt) =
ρ1ĉt

ρ2 + ĉt
, (94)

where ρ1 = 1/24 hr−1, ρ2 = 2nM, and ĉt has been dimen-
sionalised. Figure 5 illustrates the function Mc (ct).

Finally we test the impact of the cell-kill rate on change
on the interstitial volume fraction, by modelling the time-
dependent changes in this volume fraction using a partial
differential equation. This is not strictly viable, as there is
no mechanism for volume change due to tumour growth or
regression in the models derived here. However, it serves
as a first approximation to the impact of the treatment
therapy.

We denote the interstitial volume fraction by φ, and
model changes in this volume fraction through the P.D.E.

∂φ

∂t
= Pφ − Mc

(

ĉtot
t

)

φ , (95)

subject to the initial condition

φ(0) = nt . (96)

Here, P is the net cell proliferation rate and depends on
the cell line used. We investigate the cases P = 1/20,
1/40, 1/60 hours−1.

5. Solutions to the Fluid Cell Problems

To simulate fluid and vinblastine perfusion, it is first
necessary to determine the permeability coefficients E, Ea,
Ev, K, Ka, and Kv, by solving the fluid cell problems
presented in Appendix A.

11
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applied constantly over a period of 5 days, and 
apply the boundary condition 

 
 
The total BPV concentration in the interstitium 
is plotted as a function of time, and for 
constant perfusion, in Figure 12. 
 

 
Figure 12: Total BPV concentration in the interstitium 
as a function of time for constant perfusion (nM). 
 
This modelling approach provides a 
mechanism for quantitatively predicting BPV 
delivery to cancerous tissue for a range of 
delivery protocols and underlying vascular 
structures. Future work will focus on 
integrating this approach with the discrete 
modelling approach of Section 4.1, together 
with BVP binding mechanisms and associated 
cell biology. 
 
5 Conclusions and Extensions 
In this paper we have developed models 
pertinent to BPV-mediated delivery protocols 
over a range of length-scales. Firstly, we 
presented a model that describes binding of 
BPVs to cancer cells, via ligand/receptor 
interactions and endocytosis. Next we 
investigated the dependence of BPV-delivery 
to tissue on the underlying vascular structure 
and delivery mechanism.  
 
Future work will focus on integrating the 
models presented here, and developing them 
further. Firstly, the discrete and homogenized 
approaches will be used for mutual validation 
(this is essential to form concrete predictions 
of blood and BPV perfusion properties). Next, 
they will be extended to explicitly capture the 
outputs of the BPV-binding models. BPV-
transport will also be coupled to models for H+, 

oxygen and chemotherapeutic agent transport. 
In this way, we will develop a rigorously 
validated in vivo model for BPV-mediated 
delivery of anti-cancer agents that may be used 
to optimize the treatment protocol. 
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the initial dose condition, σ (0) = 2700nM, together with
three further conditions on the level of metabolism after
each phase’s half life [35]. For a person of weight 64kg
(and blood volume ≈ 4.4 litres ) these conditions are

σ (t = 4min) = 700nM , (89)

σ (t = 53min) = 150nM , (90)

σ (t = 1173min) = 10nM . (91)

This yields A = 1557nM, B = 862nM, C = 261nM, and
D = 20nM. The resulting function σ (t) is plotted in Figure
4.

Treatment through Constant Perfusion. An alternative regime
involves maintaining a constant concentration of vinblas-
tine in the bloodstream over a longer time period. To
limit damage to the patient, the achievable concentration
is lower than the initial injection concentration; indicative
values are a concentration of 8nM applied constantly to
the patient over a period of 5 days [8]. The boundary
condition on the arteriole wall is therefore

σ (t) =

{

8nM for 0 ≤ t ≤ 120 hours
0 for t > 120 hours

. (92)

This boundary condition can be captured using a ‘smoothed’
Heaviside function, where the smoothing occurs in a small
region around t = 120 hours and acts to ensure the first
derivative of the function is continuous here. This aids the
stability of finite element method, and ensures convergence
of the solution.

For this administration technique, the concentration of
vinblastine in the bloodstream is initially lower than for a
single injection. However, after a single injection the injec-
tion falls to 8nM by around 24 hours, and then continues
to fall, and so for constant perfusion the concentration in
the bloodstream is higher for the final four days.

4.3. Investigation of Vinblastine Concentration

Using the chamber-scale models that have been derived
thus far, it is possible to test whether treatment through
a single injection or constant perfusion is more efficient
at killing tumour cells in a dorsal skinfold chamber. The
unknown parameters in the drug transport model are Υa
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Figure 5: The cell kill rate of vinblastine, as given by equation (94).

and Υv (these are not measured experimentally). We pick
values of Υa = Υv = 10−5 which give realistic results.
However, these parameters should be determined by vali-
dation against clinical data or full scale numerical solutions
in future.

For each of the concentrations of vinblastine in the ar-
terioles, venules, capillaries and interstitium, we evaluate
the total concentration in the malignant section, given by
the integral of each of these components over the malig-
nant domain,

ĉtot
i =

1

Volume of Malignant Domain

∫

Malignant Domain

ĉi dV.

(93)
We present data on the evolution of ĉtot

i in time for i =
a, v, c, t. For the simulations in this paper, the dimension-
less volume of the malignant domain was 0.263976.

In addition, we evaluate the cell kill rate as a conse-
quence of the vinblastine treatment. A functional form
for this cell kill rate, Mc, may be determined as follows.
The maximum killing rate is 1/24 hours−1 [38], and the
concentration of vinblastine required to kill cells at the
half-maximal kill rate is 2nM [11, 42]. Also, the cell kill
rate is proportional to concentration for low drug concen-
trations. Therefore, we assume that the cell-kill rate, Mc,
takes the form

Mc (ĉt) =
ρ1ĉt

ρ2 + ĉt
, (94)

where ρ1 = 1/24 hr−1, ρ2 = 2nM, and ĉt has been dimen-
sionalised. Figure 5 illustrates the function Mc (ct).

Finally we test the impact of the cell-kill rate on change
on the interstitial volume fraction, by modelling the time-
dependent changes in this volume fraction using a partial
differential equation. This is not strictly viable, as there is
no mechanism for volume change due to tumour growth or
regression in the models derived here. However, it serves
as a first approximation to the impact of the treatment
therapy.

We denote the interstitial volume fraction by φ, and
model changes in this volume fraction through the P.D.E.

∂φ

∂t
= Pφ − Mc

(

ĉtot
t

)

φ , (95)

subject to the initial condition

φ(0) = nt . (96)

Here, P is the net cell proliferation rate and depends on
the cell line used. We investigate the cases P = 1/20,
1/40, 1/60 hours−1.

5. Solutions to the Fluid Cell Problems

To simulate fluid and vinblastine perfusion, it is first
necessary to determine the permeability coefficients E, Ea,
Ev, K, Ka, and Kv, by solving the fluid cell problems
presented in Appendix A.
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