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Summary 36 

Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of 37 
downstream transcription factors. Identification of subsequent off-target toxicity in these 38 
chemicals has often required extensive chemical testing in animal models. An alternative, 39 
integrated in vitro/in silico approach for predicting toxic off-target functional responses is 40 
presented to refine in vitro receptor identification and reduce the burden on in vivo testing. As 41 
part of the methodology, mathematical modelling is used to mechanistically describe 42 
processes that regulate transcriptional activity following receptor-ligand binding informed by 43 
transcription factor signalling assays. Critical reactions in the signalling cascade are identified 44 
to highlight potential perturbation points in the biochemical network that can guide and 45 
optimise additional in vitro testing. A physiologically-based pharmacokinetic model provides 46 
information on the timing and localisation of different levels of receptor activation informing 47 
whole-body toxic potential resulting from off-target binding.  48 

Introduction 49 

Many drugs are designed to interact specifically with cell surface, cytoplasmic or nuclear 50 
receptors in order to produce a beneficial therapeutic effect. However, drugs can often bind to 51 
and interact with receptors that are not their intended targets and such “off-target” binding 52 
may cause what is now often termed a molecular initiating event (MIE); e.g. receptor 53 
activation of toxicological relevance that may ultimately lead to an adverse drug reaction 54 
(ADR) (Edwards & Aronson, 2000, Guengerich, 2011, Muller & Milton, 2012). In many 55 
instances, ADRs can lead to significant morbidity and mortality as well as contributing to 56 
high levels of attrition during drug development (Lazarou et al., 1998, Pirmohamed et al., 57 
2004). This can primarily be attributed to an incomplete understanding of the molecular 58 
mechanism of action of a given compound and the lack of ability to predict which receptors 59 
may be activated unintentionally. 60 

The sole use of in vitro-based experimental strategies in the early stages of drug development 61 
and chemical testing is important but can lead to an unreliable and incomplete understanding 62 
of reactions (Coleman, 2011). Therefore, often considerable numbers of animals are used to 63 
screen out chemicals that may cause off-target toxicity with figures for the UK reporting that 64 
306,000 in vivo toxicology safety procedures were performed in 2014 (Home Office, 2015). 65 
In addition, the chemical industry used almost 345,000 animals in the EU for toxicological or 66 
other safety evaluations (European Commission, 2013) and in the USA 3-6 million fish are 67 
used annually for whole effluent toxicity testing (Scholz et al., 2013). Furthermore, 68 
pharmacokinetics and pharmacodynamics are significantly different between animal models 69 
and humans diminishing their effectiveness in detecting toxicity through pre-clinical studies 70 
(Lauschke et al., 2016). There is therefore a clear need to develop scientific approaches to 71 
identify toxicologically relevant off-target receptor binding in order to reduce the burden of 72 
animal use in toxicity testing. The development of a more ethical, non-animal toolkit for 73 
initial chemical toxicological assessment using an integrated human-based in vitro/in silico 74 
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system would enhance current strategies and may even expedite the drug development 75 
pipeline.  76 

In intracellular signalling, ligand/receptor interactions lead to the activation of a distinct set of 77 
transcription factors, the effects of which tend to be tissue specific. Several companies now 78 
offer transcription factor activation profiling platforms and so it is possible to identify and 79 
catalogue the transcription factor activation profiles of toxicologically relevant receptors 80 
upon binding of their known ligands/drugs. It is assumed that transcription factor profiles 81 
generated from off-target receptor activation of any given drug can be matched against 82 
known ligand/receptor transcription profiles in order to predict which specific receptor (or 83 
class of receptors) has been activated in the initial off-target MIE. However, when testing off-84 
target profiles of new compounds, the resulting transcription profile may not precisely match 85 
a known receptor (e.g. partial agonism or the binding of multiple receptors) and therefore a 86 
method of refinement is required to narrow the subset of off-target receptors. Our approach 87 
aims to refine the in vitro receptor identification process for off-target receptors by using 88 
information about the changes in receptor-mediated transcription factor activity following the 89 
introduction of a given compound and integrating this information with predictive in silico 90 
models and analysis. This approach allows for the identification of relevant perturbations in 91 
the transcription factor signalling pathway that signify the binding of a receptor or smaller 92 
range of receptors as well as other points of interest in the transcription factor signalling 93 
network that can contribute towards and guide subsequent off-target receptor identification.  94 

Translating the wealth of knowledge on network interactions of cellular components to 95 
dynamic models is generally limited by the amount of available quantitative information to 96 
accompany these relationships such as molecular amounts and reaction rates. However, 97 
qualitative dynamic network modelling can be used to compare with routinely generated 98 
semi-quantitative experimental time-course data, where perturbations can provide valuable 99 
information about the system. In silico modelling of this type then provides a platform for the 100 
refinement of more quantitative (parameter based) modelling (Fisher et al., 2013). In such a 101 
scenario, the network modelling method of Petri nets provide an effective tool, particularly in 102 
the complex, stochastic framework of molecular biological pathways (Chaouiya, 2007, 103 
Heiner et al., 2008, Heidary et al., 2015). Petri nets are often used to model multiple species 104 
and reactions without defining large quantities of unknown parameters, as modelling 105 
emphasis is upon network topology and relative amounts of species rather than specific 106 
reaction rates. This emphasis on network structure can then be translated to methods such as 107 
flux balance analysis and metabolic control analysis without knowledge of rate constants, as 108 
was shown for the switching of the metabolic pathway in E. Coli (Edwards et al., 2001, 109 
Kitano, 2002). 110 

The identification of off-target receptor binding alone for a given compound is insufficient to 111 
predict significant off-target toxicity and so we aim to provide additional information to 112 
support and refine the subsequent evaluation of toxic potential. This is achieved by 113 
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translating knowledge of receptor binding properties and relative distribution of the receptor 114 
throughout the body to a whole-body response to the xenobiotic. This approach utilises a 115 
physiologically based pharmacokinetic (PBPK) model adapted specifically for describing 116 
receptor activation throughout the body following compound exposure. A PBPK model is a 117 
mechanistic, multi-compartment mathematical model that describes the time-course 118 
dynamics and overall kinetics of an administered drug dose throughout the organism of 119 
interest. PBPK models integrate the physicochemical properties of the substance with the 120 
specific physiology of the organism such that the evolution of the ADME (Absorption, 121 
Distribution, Metabolism and Excretion) processes can be simulated in silico. Drug/substance 122 
properties include tissue affinity, membrane permeability, enzymatic stability etc., while the 123 
organism/system component include such properties as organ mass/volume and blood flow 124 
(Rowland et al., 2011). PBPK modelling is used in this work to couple the pharmacokinetics 125 
of a drug to dose-response parameters with the associated off-target receptor in different 126 
tissues in order to generate spatio-temporal dynamics of the off-target receptor activation.  127 

Results 128 

Development of the signalling pathway model  129 

As proof of concept, an in silico model of the histamine H1 receptor signalling pathway was 130 
formulated. This pathway was chosen due to the well understood intracellular signalling 131 
interactions involved upon receptor stimulation and the existence of a known off-target 132 
partial agonist, lisuride (Bakker et al., 2004). The H1 receptor is a G-protein coupled receptor 133 
that, upon activation, leads to dissociation of Gαq/11 and the Gβγ complex. Gαq/11 activates 134 
phospholipase Cβ (PLCβ) leading to hydrolysis of phosphatidylinositol 4,5-biphosphate 135 
(PIP2) and the formation of inositol triphosphate (IP3) and diacylglycerol (DAG) (Bakker et 136 
al., 2001, Sandal et al., 2013). IP3 mediates transient intracellular calcium release from the 137 
endoplasmic reticulum (Shah et al., 2015) that eventually mediates activation of nuclear 138 
factor of activated T-cells (NFAT) (Macian, 2005), cAMP response element-binding protein 139 
(CREB) (Johannessen & Moens, 2007) and myocyte enhancer factor-2 (Mef2) transcription 140 
factors (Lu et al., 2000). Diacylglycerol simultaneously activates protein kinase C (PKC) and 141 
this phosphorylates IκB kinase (IKK), ultimately leading to nuclear factor kappa-light-chain-142 
enhancer of activated B cells (NFκB) transcription factor activation (La Porta & Comolli, 143 
1997). The Gβγ complex also plays a role in histamine signal transduction; regulating many 144 
effectors including adenylate cyclase (AC) (Maruko et al., 2005) and phosphoinositide 3 145 
kinase (PI3K) (Gautam et al., 1998). AC mediates the subsequent activation of protein kinase 146 
A via cyclic adenosine monophosphate (cAMP) leading to CREB phosphorylation and 147 
transcription factor activation (Mosenden & Taskén, 2011). PI3K mediates the activation of 148 
Akt, NF-κB and activating transcription factor 2 (ATF2) (Bence et al., 1997, Breitwieser et 149 
al., 2007). To provide semi-quantitative information for the relative transcription factor 150 
dynamics as described above, we assayed pathway perturbations using a luciferase reporter-151 
based transcription factor array to calibrate the fold increase expected of key signalling 152 
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outputs upon stimulation with an agonist. These transcription factors were identified as 153 
NFAT, NF-κB, CREB, Mef2, and ATF2. Incubation of H1 receptor expressing HeLa cells 154 
with histamine showed considerable activation of these transcription factors (Table 1).  155 

A stochastic Petri net model of the histamine H1 receptor signalling pathway was formulated 156 
based on existing knowledge of the pathway and network interactions with the five critical 157 
transcription factors determined to be activated following ligand binding. The pathway in this 158 
proof of concept provides an illustrative example of what should ultimately form part of a 159 
larger cell signalling model that incorporates the complexity of the known toxicological 160 
receptors and associated transcription factors in the proposed methodology. The H1 Petri net 161 
includes the key dynamic molecular species and appropriate network interactions that are 162 
activated during ligand-binding-induced signalling. This pathway is depicted using the 163 
modified Edinburgh Pathway Notation (mEPN) format (Freeman et al., 2010) in Figure 1 and 164 
directly corresponds to the layout of the Petri net. All rates are equal such that all stochastic 165 
transitions are equally likely to fire but are effectively modulated by the concentration of 166 
upstream reactants in a mass action process. Time is interpreted qualitatively reflecting the 167 
relative order of events. Varying quantities in the mathematical model such as the amount of 168 
ligand introduced (“dose”) and the total amounts of system species (i.e. moieties of active and 169 
inactive states for each protein) modulates the scale of transcriptional activity regulation and 170 
as such, these values were optimised to correlate with the experimental signalling assays. 171 
This optimisation was carried out by assuming a large-scale continuum approximation of the 172 
Petri net to a system of ordinary differential equations (ODEs) and fitting to the 173 
corresponding transcription factor output data (Figure 2). It should be noted that the optimal 174 
parameter set is non-identifiable for such a large system with relatively few data points to fit. 175 
However, this issue was the precise motivation for the combined Petri net/metabolic control 176 
analysis approach which is well suited to understanding the relative impact of small 177 
perturbations on the transcription factors of interest and prioritise network connectivity 178 
information in favour of accurate predictions of parameters and dynamics (Koch et al., 2010). 179 
Corresponding pathway reactions, moieties and ODEs can be found in the supplementary 180 
material. In addition to providing static information on the network interactions of the 181 
signalling pathway and relative changes in steady state activity following receptor activation, 182 
Petri nets can also be used to simulate transient temporal dynamics providing further dynamic 183 
information on the relative order and scale of transcriptional regulation (Figure 3) following a 184 
receptor-ligand binding event. However, it is clear that more data would be required for one 185 
to relate this dynamic output to the biological context, and validate any potential predictions 186 
about transient dynamics.   187 

Analysis of network perturbations to identify off-target responses 188 

The identification of significant pathway reactions upstream of transcription was achieved 189 
using metabolic control analysis (MCA), which is a mathematical technique that tests the 190 
sensitivity of a given variable to network perturbations (Kacser & Burns, 1973, Heinrich & 191 
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Rapoport, 1974). Specifically, scaled MCA concentration control coefficients provide the 192 
ratio between a relative measure of change in the steady state of a system variable as affected 193 
by perturbations in network reaction rates. In our illustrative H1 example model, MCA 194 
coefficients were calculated for each transcription factor that was experimentally determined 195 
to show significant change in activity following binding of the H1 receptor (Figure 4). The 196 
rows of the heat map in Figure 4 correspond to the numbered reactions as indicated in the 197 
supplementary material. MCA not only points to the direct regulation of gene transcription as 198 
critical to H1-associated transcriptional activity (white patches in Figure 4), but to other 199 
reactions within the cascade, upstream of the transcription factors and downstream of the 200 
target receptor. For example, in this system the transcriptional activity of Mef2 is sensitive to 201 
relatively distant biochemical reactions, such as the rate of calcium release from the 202 
endoplasmic reticulum (24% of maximum sensitivity provided by perturbation of Mef2 203 
transcription rate). Also, the model suggests that the transcriptional activity of ATF2 is more 204 
sensitive to perturbations in PIP2 synthesis than it is to regulation of the BTK:PIP3 complex 205 
that directly activates ATF2 by phosphorylation.  206 

The identification of these sensitive perturbation points within the signalling pathway model 207 
provide information beyond the transcription factor activity measurements found 208 
experimentally, which allows for more optimised, directed experimental designs for receptor 209 
identification, if initial screening fails to identify the off-target receptor. For example, for a 210 
given compound that was shown to regulate Mef2 transcriptional activity but did not interact 211 
with the H1 receptor, this model would inform a proposal to screen for receptors that are 212 
known to interact with biochemical reactions identified as being sensitive, such as calcium 213 
release, during MCA. 214 

Translation to tissue scales using a PBPK model 215 

Following an in silico identification of an off-target receptor, extrapolation to the study of 216 
potential in vivo toxicity can be performed using a PBPK model. For our illustrative example, 217 
receptor binding properties are provided by EC50 dose-response curves for the off-target H1 218 
agonist, lisuride (Figure 5A), and measurements of the corresponding binding affinity, Kd 219 
(Bakker et al., 2004). The dose-response curves were estimated by fitting the following 220 
equation to the dose-response data: 221 

 
��������% = 	
� +	

	�� −	
����

����
� 	+ 	��

, (1) 

for ligand concentration �. The optimised parameter values are given in Table 2.  In order to 222 
provide tissue-specific responses we also used Western blot measurements of relative H1 223 
receptor expression in different tissues (Figure 5B-C) and calculated modified tissue-specific 224 
EC50 values using, 225 

����� =
������

���� + ����� − ����
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where 
 denotes the 
�� tissue, �� is the dissociation equilibrium constant for lisuride and 226 
��	is a measure of receptor abundancy in tissue 
 (see Table 3). For simplicity, this model 227 
assumes that the same amount of receptor binding is required to achieve 50% response in 228 
each tissue in the absence of any other information, particularly as the response measured is 229 
proximal to receptor binding attenuating any potential amplification effects arising from 230 
potential signalling cascades in different tissues (Kenakin, 2009). For further information 231 
regarding this derivation see the supplementary material.  232 

In order to simulate the pharmacokinetics of lisuride throughout the body, physicochemical 233 
properties of the compound were required which were obtained from previously published 234 
measurements. These properties include lipophilicity, whether the drug is neutral/acid/base, 235 
solubility (obtained from the DrugBank database (Wishart et al., 2006)), molecular weight 236 
(O'Neil, 2013), acid dissociation constant (Meloun et al., 2005) and effective permeability 237 
(Winiwarter et al., 1998). The time-course dynamics simulated by the PBPK model for drug 238 
concentration in each tissue compartment of the body were then coupled to receptor binding 239 
properties and relative receptor expression in tissues to provide a predictive temporal 240 
response throughout the body. This response can be produced for any dosage regime and 241 
various methods of administration such as intravenous, oral and inhalation. The PBPK model 242 
was based on the form derived by Peters (2008). The model was optimised for lisuride 243 
physicochemical and binding properties and the H1 receptor distribution throughout the 244 
different tissues. Example lisuride response kinetics following both intravenous (IV) and oral 245 
administrations can be found in Figure 6. The IV dose of 25 µg/mL used in Figure 6 was the 246 
same as that used in a previous pharmacokinetic study for relevance (Krause et al., 1991). 247 
This experimental data was also the IV data used to optimise the PBPK model to recapitulate 248 
the lisuride dynamics in the venous blood compartment and also simulate corresponding oral 249 
profiles as per the methodology described by Peters (2008). The oral dose of 0.1 mg chosen 250 
for the PBPK model was deemed relevant by matching previous pharmacological studies 251 
(Koizumi et al., 1985, Al‐Sereiti & Turner, 1989). The dynamic response of the H1 receptor 252 
is visualised over time as a solution to equation (1) with tissue-specific EC50 values for the 253 
pharmacokinetics of lisuride (�) in different parts of the body. Both IV and oral 254 
administration simulations are plotted to also highlight the impact of delivery route. This is 255 
particularly pertinent in this case where we are studying a receptor which has a relatively 256 
high concentration in the gastrointestinal tract. IV administration results in relatively high 257 
receptor stimulation in the liver, brain, small intestine and colon at earlier times whereas oral 258 
administration results in a more gradual accumulation in these tissues and the receptors in the 259 
colon are stimulated at a near maximal level for a relatively long time after oral ingestion. 260 
These simulations allow us to compare how the off-target response varies throughout the 261 
body over time depending on the pharmacokinetics of the drug coupled with physiologically 262 
relevant receptor availability and receptor binding information. Such information is 263 
potentially useful to determine whether or not an identified off-target agonist is likely to elicit 264 
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an off-target receptor response in an area of high target density based on its physicochemical 265 
properties.   266 

Discussion 267 

Adverse drug reactions (ADRs) are a major cause of patient morbidity, mortality and drug 268 
attrition during development (Pirmohamed et al., 2004). This can be attributed to a poor 269 
understanding of the mechanisms underlying the toxic response and also to a lack of current 270 
tools for the prediction of a toxic outcome. Animal models have a limited scope and data 271 
obtained using such models may not be ideal for ascertaining toxicity seen in humans. As 272 
such, computational systems biology models can be essential tools to improve chemical 273 
reaction predictivity (Krewski et al., 2010). In this study, we describe a new in silico 274 
modelling method that can be used to enhance current knowledge of pathway perturbations in 275 
order to provide a new toxicity-testing paradigm based on human biology. In this method, 276 
chemical-mediated activation of transcription factors and intracellular signalling pathway 277 
molecules were used as readouts to inform and drive a pathway-based in silico approach to 278 
identify possible upstream receptor(s) engaged by such chemicals. In vitro data was then used 279 
to inform a PBPK in silico modelling platform to understand and rank risk of toxicity at 280 
tissue, organ and whole-body levels over time. Key to this integrative approach was the 281 
coupling of in vitro experimental techniques and advanced in silico modelling to create a 282 
unique resource that, with further development and parameterisation, could be used to predict 283 
the off-target toxicity of compounds that can then inform and direct more focussed in vivo 284 
experimentation. 285 

Mathematical modelling was used in order to mechanistically describe the processes that lead 286 
to regulation of transcriptional activity following the binding of ligand to receptor. This was 287 
achieved by designing a signalling pathway model that represented all the relevant processes 288 
and biochemical reactions downstream of ligand binding, culminating in the regulation of 289 
transcription. We have established a novel in vitro/in silico approach using data from assays 290 
measuring transcription factor activation and chemically-induced perturbations of 291 
intracellular signalling pathways to inform in silico pathway modelling. This unbiased 292 
pathway-led approach uses computational simulations to identify causality between receptor 293 
activation and pathway perturbations to aid identification of the upstream receptor/s engaged 294 
by the initial MIE. As proof of concept, an in silico Petri net model of the histamine H1 295 
receptor-signalling pathway was formulated with the off-target compound, lisuride. The 296 
output of this system provides semi-quantitative temporal dynamics for the entire pathway 297 
that can be used to investigate system perturbations, simulate experiments and provide 298 
structural pathway predictions. In vitro reporter assay data was then used to parameterise and 299 
validate the model, and the identification of critical candidate perturbation points was 300 
achieved using metabolic control analysis (MCA). Signalling pathway models can be 301 
purposely used in this methodology to provide a library of MCA coefficients for a range of 302 
transcription factors associated with receptor binding and toxicity, and guide further 303 
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experimentation. In the example shown, calcium release from the endoplasmic reticulum and 304 
PIP2 synthesis are highlighted as important upstream events for the transcriptional activity of 305 
Mef2 and ATF2. If a new compound is shown to induce the activity of these transcription 306 
factors but the receptor responsible is not identified via screening for instance, further testing 307 
could be guided towards targets that modulate these upstream processes. This illustrates the 308 
feasibility of this approach in directing further experimentation towards relevant pathway 309 
mechanisms or receptor clusters during the process of receptor identification via focussed in 310 
vitro assay testing. 311 

In vitro to in vivo extrapolations of whole-body consequences of receptor binding was 312 
explored using PBPK modelling. The structure of PBPK models typically revolves around 313 
the anatomical structure of the organism with different organs and tissues of varying 314 
perfusion rates being separated into distinct compartments. These compartments are then 315 
coupled through the circulation, whose arterial and venous flow is described to connect the 316 
organs in a physiological way. Entrance points (e.g. absorption) of the model depend on the 317 
drug administration method (e.g. inhalation, ingestion, injection) while exit points (e.g. 318 
excretion) are generally described via the kidneys and intestine. The flow kinetics of the 319 
model determine distribution, while metabolism occurs in the liver and intestine. The inherent 320 
physiological basis distinguishes true PBPK models from their PK model counterparts that 321 
usually simplify the physiology to fewer hypothetical compartments of different flow rates, 322 
driven by the data/process of interest, such that they are often more tractable analytically. In 323 
contrast, PBPK models are generally more complex but are designed to have a better global 324 
representation such that valid extrapolations can be made and disparate experimental data can 325 
be integrated during model parameterisation. In this way, PBPK models are less reliant on 326 
data-fitting to obtain appropriate values for equation parameters and essentially the same 327 
model (with appropriate modifications) can be suitably applied in many different 328 
pharmacological scenarios for quantitative risk assessment and therapy optimisation. 329 

PBPK model simulations are increasingly being used in pharmacology, in both academia and 330 
industry, in order to provide important predictions of the pharmacokinetic properties and 331 
toxic potential of new drugs at an early stage in drug development (Zhao et al., 2011, Jones & 332 
Rowland‐Yeo, 2013, Tsamandouras et al., 2015). This type of in silico testing can offer a 333 
quicker, cheaper and more ethical alternative method when compared to traditional in vivo 334 
experiments performed. Ideally, both experimental and computational methods are used 335 
harmoniously to provide a cycle of information and enhanced knowledge iteration as the 336 
accuracy of PBPK models inevitably rely on quality experimental data to calibrate rates 337 
within the differential equations. In the method reported here, physicochemical properties of 338 
the chemical are combined with tissue specific receptor expression and EC50 data to predict 339 
time-course dynamics of the chemical concentrations in each tissue, as well as tissue level 340 
receptor activation responses to that chemical. These predictions can be produced for any 341 
dosage regime and various methods of administration. In the example study of the off-target 342 
partial agonist of the histamine H1 receptor, lisuride, the combination of lisuride 343 
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pharmacokinetics and relative H1 receptor distribution throughout the body allowed us to 344 
predict that the dose response would be most significant in the brain, liver and 345 
gastrointestinal system. In this case example, these results are supported by prior knowledge 346 
of the compound and receptor although the modelling was done agnostic of such prior in vivo 347 
findings. In particular, receptor response localised to the brain is somewhat expected since 348 
lisuride is primarily a psychotherapeutic drug, affecting dopamine and serotonin regulation 349 
(Marona-Lewicka et al., 2002). Lisuride is primarily metabolised in the liver, where there is 350 
relatively high expression of histamine receptors. There is also high receptor expression in 351 
the gastrointestinal tract due to the role of histamine in intestinal secretion and motility (Leurs 352 
et al., 1995, Sander et al., 2006). Furthermore, lisuride administration in patients with 353 
Parkinson’s disease has been associated with gastrointestinal side effects (Ebadi & Pfeiffer, 354 
2004). Although relative response rates have been quantified by the model in different parts 355 
of the body at different times, to translate what such a response directly represents in the 356 
context of toxicity and clinical relevance is very complicated, and restricted in this 357 
methodology, establishing a challenge beyond the scope of this paper. However, these PBPK-358 
based extrapolations do allow us to generate predictive data relevant to risk assessment and 359 
further translation to toxicity at the organ and whole-body levels for off-target receptor 360 
perturbations. The output provided by this method is intended to identify toxic potential and 361 
guide subsequent in vitro and in vivo experimentation to organs of interest/importance. 362 

The operating parameters of the approach are circumscribed by the extent of current 363 
knowledge regarding receptors and their function. This represents a potential limitation of the 364 
strategy, although the mathematically-driven signalling pathway model has the potential to 365 
identify novel, uncharacterised receptor targets. The challenge of identifying sensitive 366 
perturbation points within large-scale networks of receptor signalling pathways required that 367 
a semi quantitative network-based approach must be used. This inevitably limits the amount 368 
of predictive, dynamic information that can be extrapolated and caution must be exercised 369 
such that the utility of mathematical models is preserved by acknowledging the relevant 370 
application that stimulated its design. The approach is experimental (with elements of 371 
modelling and extrapolation to assess and rank toxicological risk) and does not incorporate 372 
prediction of receptor binding based on chemical or receptor structures. The strength of the 373 
methodology is predicated on currently available, validated experimental methods as it does 374 
not require the development of new, untested technologies and relies on sound criteria-based 375 
selection of receptors, and quantifying receptor function and binding using established 376 
experimental techniques. Future work requires the development of multiple pathway models 377 
based on training chemical data as well as the integration of pathways, which should be 378 
optimised and validated with non-training data. Furthermore, the current PBPK framework 379 
can be extended to ensure improved predictive potential by incorporating mechanistic tissue 380 
models, catering for a wider range of chemicals and capturing population level responses. 381 
More work is also needed to translate tissue-level receptor activation responses to measures 382 
of toxicity such as relevant biomarkers. Carefully calculated person-to-person variation and 383 
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covariances within organism-related parameters would also allow for the prediction of a 384 
population response whereby different individuals within a sample population may exhibit 385 
different levels of exposure and therefore associated toxicity from the same dosage levels. 386 
The combined in vitro/in silico approach of this study has shown how the multidisciplinary, 387 
iterative process of systems biology can be applied to direct experiments, optimise the utility 388 
of generated data and challenge and refine theoretical modelling in order to improve methods 389 
for detecting and predicting toxicity caused by compounds that bind to off-target receptors. 390 

 391 

Acknowledgments 392 

JL, KJS and SDW acknowledges funding support from the Liverpool Centre for Mathematics 393 
in Healthcare (EPSRC grant: EP/N014499/1). All authors acknowledge funding support from 394 
the NC3Rs CRACK-IT Challenge 18: Targeting off-targets award. 395 

Author Contributions 396 

JL contributed to the mathematical modelling and wrote the manuscript; KJS and CLM 397 
contributed to the mathematical modelling; HEC and CM contributed to the design of the 398 
experimental work; AMN and DP performed the experiments; JGS designed the research; PS 399 
contributed to, designed and performed the experimental work; SDW contributed to the 400 
mathematical modelling and directed the research. All authors read and approved the final 401 
manuscript.    402 

Declaration of Interests 403 

The authors declare no competing interests. 404 

 405 

  406 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

 

References 407 

Al ‐Sereiti M.R. and Turner P. (1989). The effects of lisuride, terguride and bromocriptine on 408 
intraocular pressure (IOP). Br. J. Clin. Pharmacol. 27: 159-163. 409 

 410 
Bakker R.A., Schoonus S.B.J., Smit M.J., Timmerman H. and Leurs R. (2001). Histamine 411 
H1-receptor activation of nuclear factor-κB: roles for Gβγ-and Gαq/11-subunits in 412 
constitutive and agonist-mediated signaling. Mol. Pharmacol. 60: 1133-1142. 413 

 414 
Bakker R.A., Weiner D.M., Ter Laak T., Beuming T., Zuiderveld O.P., Edelbroek M., 415 
Hacksell U., Timmerman H., Brann M.R. and Leurs R. (2004). 8R-lisuride is a potent 416 
stereospecific histamine H1-receptor partial agonist. Mol. Pharmacol. 65: 538-549. 417 

 418 
Bence K., Ma W., Kozasa T. and Huang X.-Y. (1997). Direct stimulation of Bruton's tyrosine 419 
kinase by Gq-protein α-subunit. Nature 389: 296-299. 420 

 421 
Breitwieser W., Lyons S., Flenniken A.M., Ashton G., Bruder G., Willington M., Lacaud G., 422 
Kouskoff V. and Jones N. (2007). Feedback regulation of p38 activity via ATF2 is essential 423 
for survival of embryonic liver cells. Genes Dev. 21: 2069-2082. 424 

 425 
Chaouiya C. (2007). Petri net modelling of biological networks. Briefings in bioinformatics 426 
8: 210-219. 427 

 428 
Coleman R.A. (2011). Human tissue in the evaluation of safety and efficacy of new 429 
medicines: a viable alternative to animal models? ISRN pharmaceutics 2011. 430 

 431 
Ebadi M. and Pfeiffer R.F. (2004). Parkinson's Disease, (CRC Press). 432 

 433 
Edwards I.R. and Aronson J.K. (2000). Adverse drug reactions: definitions, diagnosis, and 434 
management. The Lancet 356: 1255-1259. 435 

 436 
Edwards J.S., Ibarra R.U. and Palsson B.O. (2001). In silico predictions of Escherichia coli 437 
metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-130. 438 

 439 
European Commission (2013). Seventh Report on the Statistics on the Number of Animals 440 
used for Experimental and other Scientific Purposes in the Member States of the European 441 
Union. 442 

 443 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

 

Fisher C.P., Plant N.J., Moore J.B. and Kierzek A.M. (2013). QSSPN: dynamic simulation of 444 
molecular interaction networks describing gene regulation, signalling and whole-cell 445 
metabolism in human cells. Bioinformatics 29: 3181-3190. 446 

 447 
Freeman T.C., Raza S., Theocharidis A. and Ghazal P. (2010). The mEPN scheme: an 448 
intuitive and flexible graphical system for rendering biological pathways. BMC Syst. Biol. 4: 449 
65. 450 

 451 
Gautam N., Downes G.B., Yan K. and Kisselev O. (1998). The G-protein βγ complex. Cell. 452 
Signal. 10: 447-455. 453 

 454 
Guengerich F.P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical 455 
development. Drug Metab. Pharmacokinet. 26: 3-14. 456 

 457 
Heidary Z., Ghaisari J., Moein S., Naderi M. and Gheisari Y. (2015). Stochastic Petri Net 458 
Modeling of Hypoxia Pathway Predicts a Novel Incoherent Feed-Forward Loop Controlling 459 
SDF-1 Expression in Acute Kidney Injury. 460 

 461 
Heiner M., Gilbert D. and Donaldson R. (2008). Petri nets for systems and synthetic biology. 462 
Formal methods for computational systems biology, (Springer): 215-264. 463 

 464 
Heinrich R. and Rapoport T.A. (1974). A Linear Steady‐State Treatment of Enzymatic 465 
Chains. The FEBS Journal 42: 97-105. 466 

 467 
Home Office (2015). Annual Statistics of Scientific Procedures on Living Animals Great 468 
Britain 2014. 469 

 470 
Johannessen M. and Moens U. (2007). Multisite phosphorylation of the cAMP response 471 
element-binding protein (CREB) by a diversity of protein kinases. Front Biosci 12: e32. 472 

 473 
Jones H.M. and Rowland‐Yeo K. (2013). Basic concepts in physiologically based 474 
pharmacokinetic modeling in drug discovery and development. CPT: pharmacometrics & 475 
systems pharmacology 2: 1-12. 476 

 477 
Kacser H. and Burns J.A. (1973). The Control of Flux. Symp. Soc. Exp. Biol. 27: 65-104. 478 

 479 
Kenakin T. (2009). A pharmacology primer: theory, application and methods, (Academic 480 
Press). 481 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

 

 482 
Kitano H. (2002). Systems biology: a brief overview. Science 295: 1662-1664. 483 

 484 
Koch I., Reisig W. and Schreiber F. (2010). Modeling in systems biology: the Petri net 485 
approach, (Springer Science & Business Media). 486 

 487 
Koizumi K., Aono T. and Kurachi K. (1985). The effect of lisuride hydrogen maleate on 488 
anterior pituitary hormones, oestradiol and cortisol in normal and hyperprolactinaemic 489 
women. European Journal of Obstetrics & Gynecology and Reproductive Biology 20: 19-26. 490 

 491 
Krause W., Mager T., Kühne G., Duka T. and Voet B. (1991). The pharmacokinetics and 492 
pharmacodynamics of lisuride in healthy volunteers after intravenous, intramuscular, and 493 
subcutaneous injection. Eur. J. Clin. Pharmacol. 40: 399-403. 494 

 495 
Krewski D., Acosta Jr D., Andersen M., Anderson H., Bailar III J.C., Boekelheide K., Brent 496 
R., Charnley G., Cheung V.G. and Green Jr S. (2010). Toxicity testing in the 21st century: a 497 
vision and a strategy. Journal of Toxicology and Environmental Health, Part B 13: 51-138. 498 

 499 
La Porta C.A. and Comolli R. (1997). PKC-dependent modulation of IkB alpha-NFkB 500 
pathway in low metastatic B16F1 murine melanoma cells and in highly metastatic BL6 cells. 501 
Anticancer Res. 18: 2591-2597. 502 

 503 
Lauschke V.M., Hendriks D.F.G., Bell C.C., Andersson T.B. and Ingelman-Sundberg M. 504 
(2016). Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of 505 
the Hepatotoxicity of Drugs and Drug Candidates. Chem. Res. Toxicol. 506 

 507 
Lazarou J., Pomeranz B.H. and Corey P.N. (1998). Incidence of adverse drug reactions in 508 
hospitalized patients: a meta-analysis of prospective studies. JAMA 279: 1200-1205. 509 

 510 
Leurs R., Smit M. and Timmerman H. (1995). Molecular pharmacological aspects of 511 
histamine receptors. Pharmacol. Ther. 66: 413-463. 512 

 513 
Lu J., McKinsey T.A., Nicol R.L. and Olson E.N. (2000). Signal-dependent activation of the 514 
MEF2 transcription factor by dissociation from histone deacetylases. Proceedings of the 515 
National Academy of Sciences 97: 4070-4075. 516 

 517 
Macian F. (2005). NFAT proteins: key regulators of T-cell development and function. Nature 518 
Reviews Immunology 5: 472-484. 519 

 520 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

 

Marona-Lewicka D., Kurrasch-Orbaugh D.M., Selken J.R., Cumbay M.G., Lisnicchia J.G. 521 
and Nichols D.E. (2002). Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A 522 
receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology 523 
164: 93-107. 524 

 525 
Maruko T., Nakahara T., Sakamoto K., Saito M., Sugimoto N., Takuwa Y. and Ishii K. 526 
(2005). Involvement of the βγ subunits of G proteins in the cAMP response induced by 527 
stimulation of the histamine H1 receptor. Naunyn-Schmiedeberg's Arch. Pharmacol. 372: 528 
153-159. 529 

 530 
Meloun M., Syrovy T. and Vrana A. (2005). The thermodynamic dissociation constants of 531 
haemanthamine, lisuride, metergoline and nicergoline by the regression analysis of 532 
spectrophotometric data. Anal. Chim. Acta 543: 254-266. 533 

 534 
Mosenden R. and Taskén K. (2011). Cyclic AMP-mediated immune regulation—overview of 535 
mechanisms of action in T cells. Cell. Signal. 23: 1009-1016. 536 

 537 
Muller P.Y. and Milton M.N. (2012). The determination and interpretation of the therapeutic 538 
index in drug development. Nature reviews Drug discovery 11: 751-761. 539 

 540 
O'Neil M.J. (2013). The Merck Index: An Encyclopedia of Chemicals, Drugs, and 541 
Biologicals, (Royal Society of Chemistry). 542 

 543 
Peters S.A. (2008). Evaluation of a generic physiologically based pharmacokinetic model for 544 
lineshape analysis. Clin. Pharmacokinet. 47: 261-275. 545 

 546 
Pirmohamed M., James S., Meakin S., Green C., Scott A.K., Walley T.J., Farrar K., Park 547 
B.K. and Breckenridge A.M. (2004). Adverse drug reactions as cause of admission to 548 
hospital: prospective analysis of 18 820 patients. BMJ 329: 15-19. 549 

 550 
Rowland M., Peck C. and Tucker G. (2011). Physiologically-based pharmacokinetics in drug 551 
development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 51: 45-73. 552 

 553 
Sandal M., Paltrinieri D., Carloni P., Musiani F. and Giorgetti A. (2013). Structure/function 554 
relationships of phospholipases C Beta. Current Protein and Peptide Science 14: 650-657. 555 

 556 
Sander L.E., Lorentz A., Sellge G., Coeffier M., Neipp M., Veres T., Frieling T., Meier P.N., 557 
Manns M.P. and Bischoff S.C. (2006). Selective expression of histamine receptors H1R, 558 
H2R, and H4R, but not H3R, in the human intestinal tract. Gut 55: 498-504. 559 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

 

 560 
Scholz S., Sela E., Blaha L., Braunbeck T., Galay-Burgos M., Garcia-Franco M., Guinea J., 561 
Kluever N., Schirmer K. and Tanneberger K. (2013). A European perspective on alternatives 562 
to animal testing for environmental hazard identification and risk assessment. Regul. Toxicol. 563 
Pharmacol. 67: 506-530. 564 

 565 
Shah S.Z.A., Zhao D., Khan S.H. and Yang L. (2015). Regulatory mechanisms of 566 
endoplasmic reticulum resident IP3 receptors. J. Mol. Neurosci. 56: 938-948. 567 

 568 
Tsamandouras N., Rostami‐Hodjegan A. and Aarons L. (2015). Combining the ‘bottom 569 
up’and ‘top down’approaches in pharmacokinetic modelling: fitting PBPK models to 570 
observed clinical data. Br. J. Clin. Pharmacol. 79: 48-55. 571 

 572 
Winiwarter S., Bonham N.M., Ax F., Hallberg A., Lennernäs H. and Karlén A. (1998). 573 
Correlation of human jejunal permeability (in vivo) of drugs with experimentally and 574 
theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41: 575 
4939-4949. 576 

 577 
Wishart D.S., Knox C., Guo A.C., Shrivastava S., Hassanali M., Stothard P., Chang Z. and 578 
Woolsey J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and 579 
exploration. Nucleic Acids Res. 34: D668-D672. 580 

 581 
Zhao P., Zhang L., Grillo J.A., Liu Q., Bullock J.M., Moon Y.J., Song P., Brar S.S., 582 
Madabushi R. and Wu T.C. (2011). Applications of physiologically based pharmacokinetic 583 
(PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Ther. 89: 259-584 
267. 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

  593 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

 

Figure Legends 594 

Figure 1: Schematic representation for the Petri net of the histamine H1 receptor 595 
signalling pathway using mEPN notation. The Petri net describes the key relationships 596 
between components of the signalling pathway system culminating in the regulation of 597 
downstream transcription factor expression stimulated by the binding of a ligand to the 598 
histamine H1 receptor.  599 

Figure 2: Optimised transcription factor output. The ligand (histamine) was introduced at 600 
t = 0 (Petri net time units) in the model simulation. Prior to t = 0 the model was run to steady 601 
state. The model solution was fit to the data via optimisation of the conserved moieties of the 602 
signalling pathway. Dotted lines represent the fold increase in transcriptional activity for the 603 
relevant transcription factor observed in the transcription assays. Solid lines represent the 604 
normalised model solution for the corresponding transcriptional activity as simulated by 605 
luciferase dynamics.  606 

Figure 3: Transient dynamic output of the histamine H1 receptor signalling pathway 607 
using the stochastic Petri net. This figure illustrates the dynamic output of the stochastic 608 
Petri net when a small transient perturbation to the ligand concentration is made at t=200 609 
units, representing the pre-stimulation steady state. Dynamics are shown for model variables 610 
that correspond to luciferase signals for transcription factors associated with a receptor 611 
stimulation perturbation. 612 

Figure 4: Metabolic Control Analysis (MCA) of the H1 signalling pathway. Scaled 613 
concentration control coefficients as a result of MCA are plotted for the activity of five 614 
transcription factors modulated by histamine H1 receptor binding. Each row of the heat map 615 
numerically corresponds to a reaction term in the signalling pathway model (see 616 
supplementary material). Maximum and minimum values in the heat map (white patches) 617 
represent maximum sensitivity to perturbation of the reaction terms in the model depicting 618 
direct transcriptional regulation rates and luciferase decay rates.  619 

Figure 5: Histamine/lisuride dose response, EC50 and kinetic parameters. (A): Ligand 620 
(histamine) and partial agonist (lisuride) dose-response assays used to calculate EC50 values. 621 
(B): Immunoblotting of H1 receptor in murine organs. (C): Relative quantification of 622 
immunoblot relative to HeLa cell lysates. 623 

Figure 6: Temporal tissue response predicted by PBPK modelling following doses of 624 
lisuride. (A): 25 µg/mL administered intravenously. (B): 0.1 mg administered orally. Tissues 625 
are labelled as follows: heart (HE), lungs (LU), kidneys (KI), liver (LI), bone (BO), brain 626 
(BR), spleen (SP), small intestine (SI) and colon (CO).  627 

 628 
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Table Legends 630 

Table 1: Transcription factor changes. Alterations in expression levels of specified genes 631 
in the presence of histamine after 6 hours expressed as mean fold changes in relative 632 
luciferase units with standard deviation (n=3) as determined by Cignal Reporter Assay.  633 

Table 2: Kinetic parameters of lisuride and the histamine H1 receptor. Receptor 634 
activation of the H1-histamine receptor was studied with known agonist (histamine) and off-635 
target agonist (lisuride). Using these assays, each parameter was calculated using GraphPad 636 
Prism. 637 

Table 3: Relative amounts of histamine H1 receptor in murine tissue calculated using 638 
immunoblot analysis. Values were used to calculate tissue-specific receptor scaling factors 639 
for lisuride EC50 values when binding to the histamine H1 receptor. 640 
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TABLES 658 

Table 1 659 

Transcription Factor Fold change in relative luciferase units 
NFAT 1.97 ± 0.063 
NFκB 2.18 ± 1.47 
CREB 1.54 ± 0.027 

MEF2 2.74 ± 1.31 
ATF2 1.67 ± 8.99 
 660 

Table 2 661 

Parameter Value Standard Error Units 
	
�  7.98 % 1.066 / 
	��  36.55 % 0.5863 / 
log ����  -7.968 0.06724 mol/L 
� (Hill coefficient) 0.8411 0.1009 / 
��   8 × 10-9 0.0577 mol/L 
 662 

Table 3 663 

Parameter Value Tissue 
�!"  5.60 Heart 
�#$  3.56 Lungs 
�%&  6.64 Kidney 
�#&  11.63 Liver 
�'(  3.88 Skeletal muscle 
�')  5.78 Brain 
�*+  5.83 Spleen 
�*&  5.56 Small intestine 
�,(  25.90 Large intestine 
 664 
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A combined in vitro/in silico approach to identifying off-target receptor toxicity 

Highlights 

• Development of in vitro/in silico framework for identifying off-target toxicity. 

• Mathematical modelling of receptor signalling and related transcriptional activity. 

• Identification of key events in the signalling pathway. 

• Off-target receptor activation in vivo simulated using PBPK modelling. 


