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Summary

Many xenobiotics can bind to off-target receptand aause toxicity via the dysregulation of
downstream transcription factors. Identification safbsequent off-target toxicity in these
chemicals has often required extensive chemicdintesn animal models. An alternative,
integratedin vitro/in silico approach for predicting toxic off-target functibmasponses is
presented to refinin vitro receptor identification and reduce the burdemmonvo testing. As
part of the methodology, mathematical modellingused to mechanistically describe
processes that regulate transcriptional activitip¥ang receptor-ligand binding informed by
transcription factor signalling assays. Criticaggons in the signalling cascade are identified
to highlight potential perturbation points in thed¢hemical network that can guide and
optimise additionain vitro testing. A physiologically-based pharmacokinetiod@l provides
information on the timing and localisation of diat levels of receptor activation informing
whole-body toxic potential resulting from off-tatdgending.

Introduction

Many drugs are designed to interact specificallyhvgell surface, cytoplasmic or nuclear
receptors in order to produce a beneficial therapedfect. However, drugs can often bind to
and interact with receptors that are not theirndesl targets and such “off-target” binding
may cause what is now often termed a molecularatimg event (MIE); e.g. receptor
activation of toxicological relevance that may mistely lead to an adverse drug reaction
(ADR) (Edwards & Aronson, 2000, Guengerich, 2011ylist & Milton, 2012). In many
instances, ADRs can lead to significant morbidityl anortality as well as contributing to
high levels of attrition during drug developmentgarou et al., 1998, Pirmohamed et al.,
2004). This can primarily be attributed to an ingdete understanding of the molecular
mechanism of action of a given compound and thle ¢d@bility to predict which receptors
may be activated unintentionally.

The sole use dh vitro-based experimental strategies in the early stafydrug development
and chemical testing is important but can leadnta@reliable and incomplete understanding
of reactions (Coleman, 2011). Therefore, often iwrable numbers of animals are used to
screen out chemicals that may cause off-targetitgxvith figures for the UK reporting that
306,000in vivo toxicology safety procedures were performed in&2(Home Office, 2015).

In addition, the chemical industry used almost 3@8,animals in the EU for toxicological or
other safety evaluations (European Commission, Pa@m8d in the USA 3-6 million fish are
used annually for whole effluent toxicity testingcholz et al.,, 2013). Furthermore,
pharmacokinetics and pharmacodynamics are signtficaifferent between animal models
and humans diminishing their effectiveness in detgaoxicity through pre-clinical studies
(Lauschke et al., 2016). There is therefore a ahesmd to develop scientific approaches to
identify toxicologically relevant off-target receptbinding in order to reduce the burden of
animal use in toxicity testing. The developmentaofore ethical, non-animal toolkit for

initial chemical toxicological assessment usingirdegrated human-based vitro/in silico
2
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system would enhance current strategies and magy expedite the drug development
pipeline.

In intracellular signalling, ligand/receptor intetians lead to the activation of a distinct set of
transcription factors, the effects of which tendottissue specific. Several companies now
offer transcription factor activation profiling pfarms and so it is possible to identify and
catalogue the transcription factor activation pesfiof toxicologically relevant receptors
upon binding of their known ligands/drugs. It isasied that transcription factor profiles
generated from off-target receptor activation of ajiven drug can be matched against
known ligand/receptor transcription profiles in erdo predict which specific receptor (or
class of receptors) has been activated in thalmfi-target MIE. However, when testing off-
target profiles of new compounds, the resultinggcaiption profile may not precisely match
a known receptor (e.g. partial agonism or the bigdf multiple receptors) and therefore a
method of refinement is required to narrow the stilo$ off-target receptors. Our approach
aims to refine then vitro receptor identification process for off-targeteptors by using
information about the changes in receptor-mediattscription factor activity following the
introduction of a given compound and integrating ihformation with predictiven silico
models and analysis. This approach allows for deatification of relevant perturbations in
the transcription factor signalling pathway thajrsiy the binding of a receptor or smaller
range of receptors as well as other points of @stem the transcription factor signalling
network that can contribute towards and guide sylpsat off-target receptor identification.

Translating the wealth of knowledge on network riatéions of cellular components to
dynamic models is generally limited by the amounawailable quantitative information to
accompany these relationships such as moleculaumiand reaction rates. However,
gualitative dynamic network modelling can be usedcompare with routinely generated
semi-quantitative experimental time-course datagrelperturbations can provide valuable
information about the systerm silico modelling of this type then provides a platform tioe
refinement of more quantitative (parameter baseajating (Fisher et al., 2013). In such a
scenario, the network modelling method of Petrsebvide an effective tool, particularly in
the complex, stochastic framework of molecular dgadal pathways (Chaouiya, 2007,
Heiner et al., 2008, Heidary et al., 2015). Pettisrare often used to model multiple species
and reactions without defining large quantities wfknown parameters, as modelling
emphasis is upon network topology and relative art®wf species rather than specific
reaction rates. This emphasis on network struatarethen be translated to methods such as
flux balance analysis and metabolic control analygthout knowledge of rate constants, as
was shown for the switching of the metabolic patyhwaE. Coli (Edwards et al., 2001,
Kitano, 2002).

The identification of off-target receptor bindinp=e for a given compound is insufficient to
predict significant off-target toxicity and so wémato provide additional information to
support and refine the subsequent evaluation ofc t@otential. This is achieved by
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translating knowledge of receptor binding propera@d relative distribution of the receptor
throughout the body to a whole-body response toxgrebiotic. This approach utilises a
physiologically based pharmacokinetic (PBPK) moddapted specifically for describing
receptor activation throughout the body followingmpound exposure. A PBPK model is a
mechanistic, multi-compartment mathematical modeéat t describes the time-course
dynamics and overall kinetics of an administeredgddose throughout the organism of
interest. PBPK models integrate the physicochenpecaperties of the substance with the
specific physiology of the organism such that thelaion of the ADME (Absorption,
Distribution, Metabolism and Excretion) processas be simulatech silico. Drug/substance
properties include tissue affinity, membrane pefilgg, enzymatic stability etc., while the
organism/system component include such propersesrgan mass/volume and blood flow
(Rowland et al., 2011). PBPK modelling is usedhis work to couple the pharmacokinetics
of a drug to dose-response parameters with theciassg off-target receptor in different
tissues in order to generate spatio-temporal dycswofithe off-target receptor activation.

Results
Development of the signalling pathway model

As proof of concept, am silico model of the histamine H1 receptor signalling patih was
formulated. This pathway was chosen due to the wetlerstood intracellular signalling
interactions involved upon receptor stimulation ahé existence of a known off-target
partial agonist, lisuride (Bakker et al., 2004) eTH1 receptor is a G-protein coupled receptor
that, upon activation, leads to dissociation ef,43 and the By complex. (11 activates
phospholipase € (PLCB) leading to hydrolysis of phosphatidylinositol 4iphosphate
(PIR,) and the formation of inositol triphosphategjiRnd diacylglycerol (DAG) (Bakker et
al., 2001, Sandal et al., 2013);IRediates transient intracellular calcium releasenfthe
endoplasmic reticulum (Shah et al., 2015) that madly mediates activation of nuclear
factor of activated T-cells (NFAT) (Macian, 2008AMP response element-binding protein
(CREB) (Johannessen & Moens, 2007) and myocyterneandactor-2 (Mef2) transcription
factors (Lu et al., 2000). Diacylglycerol simultasly activates protein kinase C (PKC) and
this phosphorylatexB kinase (IKK), ultimately leading to nuclear fact@appa-light-chain-
enhancer of activated B cells (KIB) transcription factor activation (La Porta & Coliho
1997). The By complex also plays a role in histamine signalgdarction; regulating many
effectors including adenylate cyclase (AC) (Marudoal., 2005) and phosphoinositide 3
kinase (PI3K) (Gautam et al., 1998). AC mediatessihbsequent activation of protein kinase
A via cyclic adenosine monophosphate (cAMP) leadiagCREB phosphorylation and
transcription factor activation (Mosenden & Task2@l1). PI3K mediates the activation of
Akt, NF-«B and activating transcription factor 2 (ATF2) (Beret al., 1997, Breitwieser et
al., 2007). To provide semi-quantitative informatifor the relative transcription factor
dynamics as described above, we assayed pathwaylh@ions using a luciferase reporter-
based transcription factor array to calibrate tbkl fincrease expected of key signalling
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outputs upon stimulation with an agonist. Thesadetaption factors were identified as
NFAT, NF«B, CREB, Mef2, and ATF2. Incubation of H1 recepéxpressing HelLa cells
with histamine showed considerable activation es#ranscription factorsi{able 1).

A stochastic Petri net model of the histamine Hieptor signalling pathway was formulated
based on existing knowledge of the pathway and ortwnteractions with the five critical
transcription factors determined to be activatdib¥ang ligand binding. The pathway in this
proof of concept provides an illustrative examptemhat should ultimately form part of a
larger cell signalling model that incorporates ttemplexity of the known toxicological
receptors and associated transcription factorearptoposed methodology. The H1 Petri net
includes the key dynamic molecular species andompate network interactions that are
activated during ligand-binding-induced signallinghis pathway is depicted using the
modified Edinburgh Pathway Notation (mMEPN) fornfateeman et al., 2010) in Figure 1 and
directly corresponds to the layout of the Petri Ak rates are equal such that all stochastic
transitions are equally likely to fire but are etigely modulated by the concentration of
upstream reactants in a mass action process. Brmgerpreted qualitatively reflecting the
relative order of events. Varying quantities in thathematical model such as the amount of
ligand introduced (“dose”) and the total amountsystem species (i.e. moieties of active and
inactive states for each protein) modulates théesmlatranscriptional activity regulation and
as such, these values were optimised to correldte the experimental signalling assays.
This optimisation was carried out by assuming gdascale continuum approximation of the
Petri net to a system of ordinary differential etuas (ODEs) and fitting to the
corresponding transcription factor output data (Feg2). It should be noted that the optimal
parameter set is non-identifiable for such a lagsem with relatively few data points to fit.
However, this issue was the precise motivationtliercombined Petri net/metabolic control
analysis approach which is well suited to undeditem the relative impact of small
perturbations on the transcription factors of iesérand prioritise network connectivity
information in favour of accurate predictions ofgraeters and dynamics (Koch et al., 2010).
Corresponding pathway reactions, moieties and O&dfs be found in the supplementary
material. In addition to providing static informai on the network interactions of the
signalling pathway and relative changes in stedale sctivity following receptor activation,
Petri nets can also be used to simulate transemparal dynamics providing further dynamic
information on the relative order and scale of sciptional regulation (Figure 3) following a
receptor-ligand binding event. However, it is cldzat more data would be required for one
to relate this dynamic output to the biological o, and validate any potential predictions
about transient dynamics.

Analysis of network perturbationsto identify off-target responses

The identification of significant pathway reactionpstream of transcription was achieved
using metabolic control analysis (MCA), which israthematical technique that tests the
sensitivity of a given variable to network perturbas (Kacser & Burns, 1973, Heinrich &
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Rapoport, 1974). Specifically, scaled MCA concedra control coefficients provide the
ratio between a relative measure of change intdeedy state of a system variable as affected
by perturbations in network reaction rates. In dlustrative H1 example model, MCA
coefficients were calculated for each transcripfactor that was experimentally determined
to show significant change in activity followingniing of the H1 receptor (Figure 4). The
rows of the heat map in Figure 4 correspond tontin@bered reactions as indicated in the
supplementary material. MCA not only points to theect regulation of gene transcription as
critical to H1l-associated transcriptional activifwhite patches in Figure 4), but to other
reactions within the cascade, upstream of the d¢rg®on factors and downstream of the
target receptor. For example, in this system thestrriptional activity of Mef2 is sensitive to
relatively distant biochemical reactions, such he tate of calcium release from the
endoplasmic reticulum (24% of maximum sensitivimopded by perturbation of Mef2
transcription rate). Also, the model suggests thattranscriptional activity of ATF2 is more
sensitive to perturbations in PIP2 synthesis thas to regulation of the BTK:PIP3 complex
that directly activates ATF2 by phosphorylation.

The identification of these sensitive perturbatomints within the signalling pathway model
provide information beyond the transcription factactivity measurements found
experimentally, which allows for more optimisediedited experimental designs for receptor
identification, if initial screening fails to iddaht the off-target receptor. For example, for a
given compound that was shown to regulate Mef2straptional activity but did not interact
with the H1 receptor, this model would inform a posal to screen for receptors that are
known to interact with biochemical reactions idéetl as being sensitive, such as calcium
release, during MCA.

Trandation to tissue scales using a PBPK model

Following anin silico identification of an off-target receptor, extragidn to the study of
potentialin vivo toxicity can be performed using a PBPK model. darillustrative example,
receptor binding properties are provided bysg@bse-response curves for the off-target H1
agonist, lisuride (Figure 5A), and measurementshef corresponding binding affinity, K
(Bakker et al., 2004). The dose-response curve® wstimated by fitting the following
equation to the dose-response data:

(Max — Min)L" (1)
EC, + L™’

for ligand concentration. The optimised parameter values are givehahle 2. In order to

provide tissue-specific responses we also used aVMestiot measurements of relative H1

receptor expression in different tissues (FigureGBand calculated modified tissue-specific

ECso values using,

Response% = Min +

K4ECs

EC:y. =
917 Ri(Ky + ECsp) — ECsg
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wherei denotes theé™ tissue,K, is the dissociation equilibrium constant for lisier and

R; is a measure of receptor abundancy in tiss(gee Table 3). For simplicity, this model
assumes that the same amount of receptor bindinggisred to achieve 50% response in
each tissue in the absence of any other informagarticularly as the response measured is
proximal to receptor binding attenuating any pasnamplification effects arising from
potential signalling cascades in different tiss{i¢snakin, 2009). For further information
regarding this derivation see the supplementargnat

In order to simulate the pharmacokinetics of lidarthroughout the body, physicochemical
properties of the compound were required which wdrined from previously published
measurements. These properties include lipoplylievhether the drug is neutral/acid/base,
solubility (obtained from the DrugBank database gN¥irt et al., 2006)), molecular weight
(O'Neil, 2013), acid dissociation constant (Melaetnal., 2005) and effective permeability
(Winiwarter et al., 1998). The time-course dynanscsulated by the PBPK model for drug
concentration in each tissue compartment of they beete then coupled to receptor binding
properties and relative receptor expression inuéissto provide a predictive temporal
response throughout the body. This response cgordmiiced for any dosage regime and
various methods of administration such as intrauenoral and inhalation. The PBPK model
was based on the form derived by Peters (2008). mibdel was optimised for lisuride
physicochemical and binding properties and the Eldeptor distribution throughout the
different tissues. Example lisuride response kisefdllowing both intravenous (IV) and oral
administrations can be found in Figure 6. The Néalof 25ug/mL used in Figure 6 was the
same as that used in a previous pharmacokinetity $tr relevance (Krause et al., 1991).
This experimental data was also the IV data usegptionise the PBPK model to recapitulate
the lisuride dynamics in the venous blood compantraed also simulate corresponding oral
profiles as per the methodology described by P€&£/@8). The oral dose of 0.1 mg chosen
for the PBPK model was deemed relevant by matchimayious pharmacological studies
(Koizumi et al., 1985, ABereiti & Turner, 1989). The dynamic response eflti receptor

is visualised over time as a solution to equatibnwith tissue-specific E€g values for the
pharmacokinetics of lisurideL) in different parts of the body. Both IV and oral
administration simulations are plotted to also hgitt the impact of delivery route. This is
particularly pertinent in this case where we arglging a receptor which has a relatively
high concentration in the gastrointestinal trabt.ddministration results in relatively high
receptor stimulation in the liver, brain, smallastine and colon at earlier times whereas oral
administration results in a more gradual accumurhain these tissues and the receptors in the
colon are stimulated at a near maximal level foelatively long time after oral ingestion.
These simulations allow us to compare how the aff¢t response varies throughout the
body over time depending on the pharmacokinetigh®fdrug coupled with physiologically
relevant receptor availability and receptor bindingormation. Such information is
potentially useful to determine whether or not @entified off-target agonist is likely to elicit
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an off-target receptor response in an area of tagiet density based on its physicochemical
properties.

Discussion

Adverse drug reactions (ADRs) are a major causpatient morbidity, mortality and drug
attrition during development (Pirmohamed et al.080 This can be attributed to a poor
understanding of the mechanisms underlying thecttegponse and also to a lack of current
tools for the prediction of a toxic outcome. Animmabdels have a limited scope and data
obtained using such models may not be ideal foerémiaing toxicity seen in humans. As
such, computational systems biology models can dsergial tools to improve chemical
reaction predictivity (Krewski et al., 2010). Inighstudy, we describe a neim silico
modelling method that can be used to enhance dknenwvledge of pathway perturbations in
order to provide a new toxicity-testing paradignsdxh on human biology. In this method,
chemical-mediated activation of transcription fast@and intracellular signalling pathway
molecules were used as readouts to inform and dripathway-baseih silico approach to
identify possible upstream receptor(s) engagediblt shemicalsln vitro data was then used
to inform a PBPKin silico modelling platform to understand and rank risktaficity at
tissue, organ and whole-body levels over time. keyhis integrative approach was the
coupling ofin vitro experimental techniques and advanoedilico modelling to create a
unique resource that, with further development parémeterisation, could be used to predict
the off-target toxicity of compounds that can theform and direct more focussed vivo
experimentation.

Mathematical modelling was used in order to medtanally describe the processes that lead
to regulation of transcriptional activity followiniipe binding of ligand to receptor. This was
achieved by designing a signalling pathway modai tepresented all the relevant processes
and biochemical reactions downstream of ligand ibgydculminating in the regulation of
transcription. We have established a nawelitro/in silico approach using data from assays
measuring transcription factor activation and cloathy-induced perturbations of
intracellular signalling pathways to infornm silico pathway modelling. This unbiased
pathway-led approach uses computational simulationdentify causality between receptor
activation and pathway perturbations to aid idesdtfon of the upstream receptor/s engaged
by the initial MIE. As proof of concept, am silico Petri net model of the histamine H1
receptor-signalling pathway was formulated with thié-target compound, lisuride. The
output of this system provides semi-quantitativegeral dynamics for the entire pathway
that can be used to investigate system perturtsgtisirmulate experiments and provide
structural pathway predictionkn vitro reporter assay data was then used to paramederise
validate the model, and the identification of cali candidate perturbation points was
achieved using metabolic control analysis (MCA)grailing pathway models can be
purposely used in this methodology to provide aaliyp of MCA coefficients for a range of
transcription factors associated with receptor inigdand toxicity, and guide further
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experimentation. In the example shown, calciumasdefrom the endoplasmic reticulum and
PIP2 synthesis are highlighted as important upstrezents for the transcriptional activity of
Mef2 and ATF2. If a new compound is shown to indtlee activity of these transcription
factors but the receptor responsible is not ideati¥ia screening for instance, further testing
could be guided towards targets that modulate thpseeam processes. This illustrates the
feasibility of this approach in directing furthexperimentation towards relevant pathway
mechanisms or receptor clusters during the proaessceptor identification via focussea
vitro assay testing.

In vitro to in vivo extrapolations of whole-body consequences of tecepinding was
explored using PBPK modelling. The structure of RBRodels typically revolves around
the anatomical structure of the organism with ddfé organs and tissues of varying
perfusion rates being separated into distinct compnts. These compartments are then
coupled through the circulation, whose arterial aadous flow is described to connect the
organs in a physiological way. Entrance points.(algsorption) of the model depend on the
drug administration method (e.g. inhalation, ingest injection) while exit points (e.g.
excretion) are generally described via the kidnayd intestine. The flow kinetics of the
model determine distribution, while metabolism asda the liver and intestine. The inherent
physiological basis distinguishes true PBPK modem their PK model counterparts that
usually simplify the physiology to fewer hypotheticompartments of different flow rates,
driven by the data/process of interest, such tiey aire often more tractable analytically. In
contrast, PBPK models are generally more compléxalaidesigned to have a better global
representation such that valid extrapolations @amhbade and disparate experimental data can
be integrated during model parameterisation. Is iy, PBPK models are less reliant on
data-fitting to obtain appropriate values for equatparameters and essentially the same
model (with appropriate modifications) can be dulgaapplied in many different
pharmacological scenarios for quantitative riskeassent and therapy optimisation.

PBPK model simulations are increasingly being usggharmacology, in both academia and
industry, in order to provide important predictiook the pharmacokinetic properties and
toxic potential of new drugs at an early stagerirgddevelopment (Zhao et al., 2011, Jones &
RowlandYeo, 2013, Tsamandouras et al., 2015). This typm aflico testing can offer a
quicker, cheaper and more ethical alternative ntethben compared to traditional vivo
experiments performed. Ideally, both experimentadl @omputational methods are used
harmoniously to provide a cycle of information aewhanced knowledge iteration as the
accuracy of PBPK models inevitably rely on quaktyperimental data to calibrate rates
within the differential equations. In the methogaoded here, physicochemical properties of
the chemical are combined with tissue specific pemreexpression and Egdata to predict
time-course dynamics of the chemical concentrationsach tissue, as well as tissue level
receptor activation responses to that chemicals@hwedictions can be produced for any
dosage regime and various methods of administraliothe example study of the off-target
partial agonist of the histamine H1 receptor, idey the combination of lisuride
9
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pharmacokinetics and relative H1 receptor distrdsuthroughout the body allowed us to
predict that the dose response would be most &gnif in the brain, liver and
gastrointestinal system. In this case exampleethesults are supported by prior knowledge
of the compound and receptor although the modelliag done agnostic of such priarvivo
findings. In particular, receptor response localise the brain is somewhat expected since
lisuride is primarily a psychotherapeutic drug,eafing dopamine and serotonin regulation
(Marona-Lewicka et al., 2002). Lisuride is primgmhetabolised in the liver, where there is
relatively high expression of histamine receptdiisere is also high receptor expression in
the gastrointestinal tract due to the role of mstee in intestinal secretion and motility (Leurs
et al., 1995, Sander et al., 2006). Furthermomyriile administration in patients with
Parkinson’s disease has been associated with geestinal side effects (Ebadi & Pfeiffer,
2004). Although relative response rates have beantdied by the model in different parts
of the body at different times, to translate whathsa response directly represents in the
context of toxicity and clinical relevance is veppmplicated, and restricted in this
methodology, establishing a challenge beyond tbpesof this paper. However, these PBPK-
based extrapolations do allow us to generate predidata relevant to risk assessment and
further translation to toxicity at the organ andolhbody levels for off-target receptor
perturbations. The output provided by this metrothiended to identify toxic potential and
guide subsequein vitro andin vivo experimentation to organs of interest/importance.

The operating parameters of the approach are cgcuibed by the extent of current
knowledge regarding receptors and their functidns Tepresents a potential limitation of the
strategy, although the mathematically-driven sigmglpathway model has the potential to
identify novel, uncharacterised receptor targetbe Tchallenge of identifying sensitive
perturbation points within large-scale networkgexdfeptor signalling pathways required that
a semi quantitative network-based approach musisbd. This inevitably limits the amount
of predictive, dynamic information that can be aeptlated and caution must be exercised
such that the utility of mathematical models isspreed by acknowledging the relevant
application that stimulated its design. The appno& experimental (with elements of
modelling and extrapolation to assess and rankcotogical risk) and does not incorporate
prediction of receptor binding based on chemicalemeptor structures. The strength of the
methodology is predicated on currently availabldidated experimental methods as it does
not require the development of new, untested tdogres and relies on sound criteria-based
selection of receptors, and quantifying receptancfion and binding using established
experimental techniques. Future work requires taeelbpment of multiple pathway models
based on training chemical data as well as thegiat®n of pathways, which should be
optimised and validated with non-training data.tRemmore, the current PBPK framework
can be extended to ensure improved predictive fiatdsy incorporating mechanistic tissue
models, catering for a wider range of chemicals eapturing population level responses.
More work is also needed to translate tissue-lesegptor activation responses to measures
of toxicity such as relevant biomarkers. Carefuaédlculated person-to-person variation and
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covariances within organism-related parameters evaléo allow for the prediction of a
population response whereby different individuaithin a sample population may exhibit
different levels of exposure and therefore assediabxicity from the same dosage levels.
The combinedn vitro/in silico approach of this study has shown how the multigiisary,
iterative process of systems biology can be appbedirect experiments, optimise the utility
of generated data and challenge and refine theatetiodelling in order to improve methods
for detecting and predicting toxicity caused by poemnds that bind to off-target receptors.
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Figure Legends

Figure 1. Schematic representation for the Petri net of the histamine H1 receptor
signalling pathway using mEPN notation. The Petri net describes the key relationships
between components of the signalling pathway systeiminating in the regulation of
downstream transcription factor expression stineglaby the binding of a ligand to the
histamine H1 receptor.

Figure 2: Optimised transcription factor output. The ligand (histamine) was introduced at
t = 0 (Petri net time units) in the model simulati®rior to t = 0 the model was run to steady
state. The model solution was fit to the data yamsisation of the conserved moieties of the
signalling pathway. Dotted lines represent the falttease in transcriptional activity for the
relevant transcription factor observed in the tcaipsion assays. Solid lines represent the
normalised model solution for the correspondingqigcaiptional activity as simulated by
luciferase dynamics.

Figure 3. Transient dynamic output of the histamine H1 receptor signalling pathway
using the stochastic Petri net. This figure illustrates the dynamic output of ttechastic
Petri net when a small transient perturbation ® lthand concentration is made at t=200
units, representing the pre-stimulation steadyestaynamics are shown for model variables
that correspond to luciferase signals for transiomp factors associated with a receptor
stimulation perturbation.

Figure 4: Metabolic Control Analysis (MCA) of the H1 signalling pathway. Scaled
concentration control coefficients as a result o€EMare plotted for the activity of five
transcription factors modulated by histamine Hleptor binding. Each row of the heat map
numerically corresponds to a reaction term in thgnaling pathway model (see
supplementary material). Maximum and minimum valueshe heat map (white patches)
represent maximum sensitivity to perturbation & teaction terms in the model depicting
direct transcriptional regulation rates and lu@ter decay rates.

Figure 5: Histaminel/lisuride dose response, ECsp and kinetic parameters. (A): Ligand
(histamine) and partial agonist (lisuride) dosepoese assays used to calculatgB@lues.
(B): Immunoblotting of H1 receptor in murine organ€): Relative quantification of
immunoblot relative to HeLa cell lysates.

Figure 6: Temporal tissue response predicted by PBPK modelling following doses of
lisuride. (A): 25 pg/mL administered intravenously. (B): 0.1 mg adsti@ied orally. Tissues
are labelled as follows: heart (HE), lungs (LU)dreys (KI), liver (LI), bone (BO), brain
(BR), spleen (SP), small intestine (SI) and colG)].
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630 TableLegends

631 Table 1. Transcription factor changes. Alterations in expression levels of specified genes
632 in the presence of histamine after 6 hours expdesse mean fold changes in relative
633 luciferase units with standard deviation (n=3) atetmined by Cignal Reporter Assay.

634 Table 2: Kinetic parameters of lisuride and the histamine H1 receptor. Receptor
635 activation of the H1-histamine receptor was studigth known agonist (histamine) and off-
636 target agonist (lisuride). Using these assays, pachmeter was calculated using GraphPad
637  Prism.

638 Table 3: Relative amounts of histamine H1 receptor in murine tissue calculated using
639 immunaoblot analysis. Values were used to calculate tissue-specificptecescaling factors
640 for lisuride EGpvalues when binding to the histamine H1 receptor.
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658 TABLES

659 Tablel
Transcription Factor Fold changein relative luciferase units
NFAT 1.97+ 0.063
NFkB 2.18+ 1.47
CREB 1.54+ 0.027
MEF2 2.74+ 1.31
ATF2 1.67+ 8.99
660
661 Table2
Parameter Value Standard Error Units
Min 7.98 % 1.066 /
Max 36.55 % 0.5863 /
log ECsq -7.968 0.06724 mol/L
n (Hill coefficient) 0.8411 0.1009 /
K, 8 x 10° 0.0577 mol/L
662
663 Table3
Parameter Value Tissue
Ryg 5.60 Heart
Ry 3.56 Lungs
Ry, 6.64 Kidney
R;; 11.63 Liver
Rgo 3.88 Skeletal muscle
Rgr 5.78 Brain
Rsp 5.83 Spleen
Rg; 5.56 Small intestine
Rco 25.90 Large intestine
664
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A combined in vitro/in silico approach to identifying off-tar get receptor toxicity

Highlights

» Development of in vitro/in silico framework for identifying off-target toxicity.

» Mathematical modelling of receptor signalling and related transcriptional activity.
* ldentification of key eventsin the signalling pathway.

» Off-target receptor activation in vivo simulated using PBPK modelling.



