301 research outputs found

    Ab Initio Evidence for the Formation of Impurity d(3z^2-r^2) Holes in Doped La_{2-x}Sr_xCuO_4

    Get PDF
    Using the spin unrestricted Becke-3-Lee-Yang-Parr density functional, we computed the electronic structure of explicitly doped La_{2-x}Sr_xCuO_4 (x = 0.125, 0.25, and 0.5). At each doping level, an impurity hole band is formed within the undoped insulating gap. This band is well-localized to CuO_6 octahedra adjacent to the Sr impurities. The nature of the impurity hole is A_{1g} in symmetry, formed primarily from the z^2 orbital on the Cu and p_z orbitals on the apical O's. There is a strong triplet coupling of this hole with the intrinsic B_{1g} Cu x^2-y^2/O1 p_{sigma} hole on the same site. Optimization of the c coordinate of the apical O's in the doped CuO_6 octahedron lead to an asymmetric anti-Jahn-Teller distortion of the O2 atoms toward the central Cu. In particular, the O2 atom between the Cu and Sr is displaced 0.26 A while the O2 atom between the Cu and La is displaced 0.10 A. Contrary to expectations, investigation of a 0.1 A enhanced Jahn-Teller distortion of this octahedron does not force formation of an x^2-y^2 hole, but instead leads to migration of the z^2 hole to the four other CuO_6 octahedra surrounding the Sr impurity. This latter observation offers a simple explanation for the bifurcation of the Sr-O2 distance revealed in x-ray absorption fine structure data.Comment: Submitted to Phys. Rev. B. See http://www.firstprinciples.com for more informatio

    Effects of dietary energy on reproductive function and production in suckled beef cows

    Get PDF
    Twenty-eight Hereford x Angus cows were utilized to determine the effects of dietary energy level before and after calving on reproductive function and production in suckled beef cows. Low levels of dietary energy before calving resulted in losses of body composition prior to calving, reduced calf birth weight, lengthened intervals from calving to ovulation, and decreased milk production and calf weight at 70 d of age (P\u3c.05). Low levels of dietary energy after calving decreased measures of body composition after calving, reduced the percentage of cows that ovulated following calving, and decreased cow milk production and calf weight at 70 d of age (P\u3c .05). We conclude that dietary energy before and after calving impacts the reproductive function and production of suckled beef cows

    Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)

    Full text link
    We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce). The Mn ions present in "dilute" concentration of just 3 molar percent form a sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm. While the existence of (RPd3)8M (where M is a p-block element) is already documented in the literature, the present work reports for the first time the formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn sub-lattice orders antiferromagnetically as inferred from the peaks in low-field magnetization at 48 K and 23 K. The latter peak progressively shifts towards lower temperatures in increasing magnetic field and disappears below 1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A strongly correlated electronic ground state arising from Kondo effect is inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0 K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also synthesized for the first time, have a spin glass ground state due to the random distribution of the Mn ions over the available "1b" sites in the parent RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
    • 

    corecore