283 research outputs found

    Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin

    Get PDF
    The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths

    Afferent arteriolopathy and glomerular collapse but not segmental sclerosis induce tubular atrophy in old spontaneously hypertensive rats

    Get PDF
    In chronic renal disease, the temporal and spatial relationship between vascular, glomerular and tubular changes is still unclear. Hypertension, an important cause of chronic renal failure, leads to afferent arteriolopathy, segmental glomerulosclerosis and tubular atrophy in the juxtamedullary cortex. We investigated the pathological changes of hypertensive renal disease in aged spontaneously hypertensive rats using a large number of serial sections, where we traced and analyzed afferent arteriole, glomerulus and proximal tubule of single nephrons. Our major finding was that both afferent arteriolopathy and glomerular capillary collapse were linked to tubular atrophy. Only nephrons with glomerular collapse (n = 13) showed tubules with reduced diameter indicating atrophy [21.66 ± 2.56 μm vs. tubules in normotensive Wistar Kyoto rats (WKY) 38.56 ± 0.56 μm, p < 0.05], as well as afferent arteriolar wall hypertrophy (diameter 32.74 ± 4.72 μm vs. afferent arterioles in WKY 19.24 ± 0.98 μm, p < 0.05). Nephrons with segmental sclerosis (n = 10) did not show tubular atrophy and tubular diameters were unchanged (35.60 ± 1.43 μm). Afferent arteriolar diameter negatively correlated with glomerular capillary volume fraction (r = −0.36) and proximal tubular diameter (r = −0.46) implying reduced glomerular and tubular flow. In line with this, chronically damaged tubules showed reduced staining for the ciliary protein inversin indicating changed ciliary signalling due to reduced urinary flow. This is the first morphological study on hypertensive renal disease making correlations between vascular, glomerular and tubular components of individual nephron units. Our data suggest that afferent arteriolopathy leads to glomerular collapse and reduced urinary flow with subsequent tubular atrophy

    The Masaya Triple Layer: a 2100 year old basaltic multi-episodic Plinian eruption from the Masaya Caldera Complex (Nicaragua)

    Get PDF
    The Masaya Caldera Complex has been the site of three highly explosive basaltic eruptions within the last six thousand years. A Plinian eruption ca. 2 ka ago formed the widespread deposits of the Masaya Triple Layer. We distinguish two facies within the Masaya Triple Layer from each other: La Concepción facies to the south and Managua facies to the northwest. These two facies were previously treated as two separated deposits (La Concepción Tephra and the Masaya Triple Layer of Pérez and Freundt, 2006) because of their distinct regional distribution and internal architectures. However, chemical compositions of bulk rock, matrix and inclusion glasses and mineral phases demonstrate that they are the product of a single basaltic magma batch. Additionally, a marker bed containing fluidal-shaped vesicular lapilli allowed us to make a plausible correlation between the two facies, also supported by consistent lateral changes in lithologic structure and composition, thickness and grain size. We distinguish 10 main subunits of the Masaya Triple Layer (I to X), with bulk volumes ranging between 0.02 and 0.22 km3, adding up to 0.86 km3 (0.4 km3 DRE) for the entire deposit. Distal deposits identified in two cores drilled offshore Nicaragua, at a distance of ∼ 170 km from the Masaya Caldera Complex, increase the total tephra volume to 3.4 km3 or ∼ 1.8 km3 DRE of erupted basaltic magma. Isopleth data of five major fallout subunits indicate mass discharges of 106 to 108 kg/s and eruption columns of 21 to 32 km height, affected by wind speeds of < 2 m/s to ∼ 20 m/s which increased during the course of the multi-episodic eruption. Magmatic Plinian events alternated with phreatoplinian eruptions and phreatomagmatic explosions generating surges that typically preceded breaks in activity. While single eruptive episodes lasted for few hours, the entire eruption probable lasted weeks to months. This is indicated by changes in atmospheric conditions and ash-layer surfaces that had become modified during the breaks in activity. The Masaya Triple Layer has allowed to reconstruct in detail how a basaltic Plinian eruption develops in terms of duration, episodicity, and variable access of external water to the conduit, with implications for volcanic hazard assessment

    Reflections on using a community-based and multisystem approach to transforming school-based intervention for children with developmental motor disorders

    Get PDF
    Evidence-based management of Developmental Coordination Disorder (DCD) in school-age children requires putting into practice the best and most current research findings, including evidence that early identification, self-management, prevention of secondary disability, and enhanced participation are the most appropriate foci of school-based occupational therapy. Partnering for Change (P4C) is a new school-based intervention based upon these principles that has been developed and evaluated in Ontario, Canada over an 8-year period. Our experience to date indicates that its implementation in schools is highly complex with involvement of multiple stakeholders across health and education sectors. In this paper, we describe and reflect upon our team’s experience in using community-based participatory action research, knowledge translation, and implementation science to transform evidence-informed practice with children who have DCD

    Management of patients with biliary sphincter of Oddi disorder without sphincter of Oddi manometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The paucity of controlled data for the treatment of most biliary sphincter of Oddi disorder (SOD) types and the incomplete response to therapy seen in clinical practice and several trials has generated controversy as to the best course of management of these patients. In this observational study we aimed to assess the outcome of patients with biliary SOD managed without sphincter of Oddi manometry.</p> <p>Methods</p> <p>Fifty-nine patients with biliary SOD (14% type I, 51% type II, 35% type III) were prospectively enrolled. All patients with a dilated common bile duct were offered endoscopic retrograde cholangiopancreatography (ERCP) and sphincterotomy whereas all others were offered medical treatment alone. Patients were followed up for a median of 15 months and were assessed clinically for response to treatment.</p> <p>Results</p> <p>At follow-up 15.3% of patients reported complete symptom resolution, 59.3% improvement, 22% unchanged symptoms, and 3.4% deterioration. Fifty-one percent experienced symptom resolution/improvement on medical treatment only, 12% after sphincterotomy, and 10% after both medical treatment/sphincterotomy. Twenty percent experienced at least one recurrence of symptoms after initial response to medical and/or endoscopic treatment. Fifty ERCP procedures were performed in 24 patients with an 18% complication rate (16% post-ERCP pancreatitis). The majority of complications occurred in the first ERCP these patients had. Most complications were mild and treated conservatively. Age, gender, comorbidity, SOD type, dilated common bile duct, presence of intact gallbladder, or opiate use were not related to the effect of treatment at the end of follow-up (p > 0.05 for all).</p> <p>Conclusions</p> <p>Patients with biliary SOD may be managed with a combination of endoscopic sphincterotomy (performed in those with dilated common bile duct) and medical therapy without manometry. The results of this approach with regards to symptomatic relief and ERCP complication rate are comparable to those previously published in the literature in cohorts of patients assessed by manometry.</p

    Pain in patients with pancreatic cancer: prevalence, mechanisms, management and future developments

    Get PDF
    Pain affects approximately 80% of patients with pancreatic cancer, with half requiring strong opioid analgesia, namely: morphine-based drugs on step three of the WHO analgesic ladder (as opposed to the weak opioids: codeine and tramadol). The presence of pain is associated with reduced survival. This article reviews the literature regarding pain: prevalence, mechanisms, pharmacological, and endoscopic treatments and identifies areas for research to develop individualized patient pain management pathways. The online literature review was conducted through: PubMed, Clinical Key, Uptodate, and NICE Evidence. There are two principal mechanisms for pain: pancreatic duct obstruction and pancreatic neuropathy which, respectively, activate mechanical and chemical nociceptors. In pancreatic neuropathy, several histological, molecular, and immunological changes occur which correlate with pain including: transient receptor potential cation channel activation and mast cell infiltration. Current pain management is empirical rather etiology-based and is informed by the WHO analgesic ladder for first-line therapies, and then endoscopic ultrasound-guided celiac plexus neurolysis (EUS-CPN) in patients with resistant pain. For EUS-CPN, there is only one clinical trial reporting a benefit, which has limited generalizability. Case series report pancreatic duct stenting gives effective analgesia, but there are no clinical trials. Progress in understanding the mechanisms for pain and when this occurs in the natural history, together with assessing new therapies both pharmacological and endoscopic, will enable individualized care and may improve patients’ quality of life and survival

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua

    Get PDF
    The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend

    Land conflict in peri-urban areas: Exploring the effects of land reform on informal settlement in Mexico

    Get PDF
    Peri-urban areas are often subject to intensive construction, through both formal and informal processes. As land transitions from rural to urban status, different land tenure and administration systems may come into conflict, leading to disputes, contestation and, in some cases, violence. However, little is known about the precise causes of peri-urban land conflict. In Mexico, peri-urban growth has historically proceeded peacefully, owing to the control exerted by a corporatist system of government, and the political use of land tenure regularisation. However, the effects of land reforms on transactions at the peri-urban fringe, in the context of wider processes of liberalisation, may be increasing vulnerability to conflict over land. This paper explores these issues through a case study of an irregular settlement on the peri-urban fringe of the provincial Mexican city of Xalapa, where contestations over informally developed land have escalated into violent encounters between groups of settlers and the state. The findings show that vulnerability to conflict in peri-urban areas can be attributed to the interaction of macro-level processes with local-level factors, including diverse claims, overlapping legal and governance frameworks and, critically, local power relations
    corecore