2,062 research outputs found
Kinetics of the thermal degradation of Erica arborea by DSC: Hybrid kinetic method
The scope of this work was the determination of kinetic parameters of the
thermal oxidative degradation of a Mediterranean scrub using a hybrid method
developed at the laboratory. DSC and TGA were used in this study under air
sweeping to record oxidative reactions. Two dominating and overlapped
exothermic peaks were recorded in DSC and individualized using an experimental
and numerical separation. This first stage allowed obtaining the enthalpy
variation of each exothermic phenomenon. In a second time, a model free method
was applied on each isolated curve to determine the apparent activation
energies. A reactional kinetic scheme was proposed for the global exotherm
composed of two independent and consecutive reactions. In fine mean values of
enthalpy variation and apparent activation energy previously determined were
injected in a model fitting method to obtain the reaction order and the
preexponential factor of each oxidative reaction. We plan to use these data in
a sub-model to be integrated in a wildland fire spread model
The influence of nickel layer thickness on microhardness and hydrogen sorption rate of commercially pure titanium alloy
The influence of nickel coating thickness on microhardness and hydrogen sorption rate by commercially pure titanium alloy was established in this work. Coating deposition was carried out by magnetron sputtering method with prior ion cleaning of surface. It was shown that increase of sputtering time from 10 to 50 minutes leads to increase coating thickness from 0.56 to 3.78 ?m. It was established that increase of nickel coating thickness leads to increase of microhardness at loads less than 0.5 kg. Microhardness values for all samples are not significantly different at loads 1 kg. Hydrogen content in titanium alloy with nickel layer deposited at 10 and 20 minutes exceeds concentration in initial samples on one order of magnitude. Further increasing of deposition time of nickel coating leads to decreasing of hydrogen concentration in samples due to coating delamination in process of hydrogenation
Structure and thermal behavior of nanocrystalline boehmite
First, the structural features of nanocrystalline boehmite synthesized by hydrolysis of aluminum sec-butoxide according to the Yoldas method are reported. The nanosized boehmite consists of rectangular platelets averaging 8 by 9 nm and 2–3 nm in thickness which contain a large excess of water. Dehydration by heating under vacuum induced an increase in the specific surface area, down to a minimum water content ( 0.2 H2O per Al2O3); values up to 470 m2/g can be reached. However this enlargement of specific surface area only results from water loss, the surface area remaining constant. The particle morphology, the excess of water,
as well as the specific surface area, depend on the amount of acid used for the peptization during the synthesis. Second, a comprehensive investigation of the dehydration kinetics is presented. The simulations of the non-isothermal experiments at constant heating rates show that thermally stimulated transformation of nanocrystalline boehmite into alumina can be accurately modeled by a 4-reaction mechanism involving: (I) the loss of physisorbed water, (II) the loss of chemisorbed water, (III) the conversion of boehmite into transition alumina, (IV) the dehydration of transition alumina (loss of residual hydroxyl groups). The activation energy of each step is found to be very similar for experiments done in various conditions (heating rate, atmosphere, kind of sample,…)
Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications
Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O2O2 and CO2CO2-enrichment. Application of the Coats–Redfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [O2O2] increased combustion reactivity. A lesser effect was observed when substituting N2N2 for CO2CO2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O2O2-enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O2O2, 70% CO2CO2) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments
Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites
The leading face of Saturn's moon Iapetus, Cassini Regio, has an albedo only
one tenth that on its trailing side. The origin of this enigmatic dichotomy has
been debated for over forty years, but with new data, a clearer picture is
emerging. Motivated by Cassini radar and imaging observations, we investigate
Soter's model of dark exogenous dust striking an originally brighter Iapetus by
modeling the dynamics of the dark dust from the ring of the exterior retrograde
satellite Phoebe under the relevant perturbations. In particular, we study the
particles' probabilities of striking Iapetus, as well as their expected spatial
distribution on the Iapetian surface. We find that, of the long-lived particles
(greater than about 5 microns), most particle sizes (greater than about 10
microns) are virtually certain to strike Iapetus, and their calculated
distribution on the surface matches up well with Cassini Regio's extent in its
longitudinal span. The satellite's polar regions are observed to be bright,
presumably because ice is deposited there. Thus, in the latitudinal direction
we estimate polar dust deposition rates to help constrain models of thermal
migration invoked to explain the bright poles (Spencer & Denk 2010). We also
analyze dust originating from other irregular outer moons, determining that a
significant fraction of that material will eventually coat Iapetus--perhaps
explaining why the spectrum of Iapetus' dark material differs somewhat from
that of Phoebe. Finally we track the dust particles that do not strike Iapetus,
and find that most land on Titan, with a smaller fraction hitting Hyperion. As
has been previously conjectured, such exogenous dust, coupled with Hyperion's
chaotic rotation, could produce Hyperion's roughly isotropic, moderate-albedo
surface.Comment: Accepted for publication in Icaru
Pseudopolymorphic transitions of niclosamide monitored by Raman spectroscopy
Niclosamide suffers pseudopolymorphic transformations when exposed to different ambient conditions, which can lead to changes in its bioavailability. In this study, the kinetics of the pseudopolymorphic transitions of niclosamide crystals are characterized. FT-Raman spectroscopy is used to quantify the anhydrate and hydrate forms of niclosamide crystals, mostly because of its high sensitivity to the strong intermolecular interactions present in these systems. The samples are exposed to well-characterized relative humidity (RH) conditions during different periods of time and both water diffusion and polymorphic changes are monitored from the corresponding changes observed in the vibrational spectra. Both hydration and dehydration were found to be single-step processes, with a half-life time of ca. 142 and 63 h, respectively, at 24 °C. Copyright © 2008 John Wiley & Sons, Ltd
Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood
The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30
Thermal degradation kinetics of a commercial epoxy resin-Comparative analysis of parameter estimation methods
The thermal degradation behavior of a commercial epoxy resin, EpoFix® (Struers), has been investigated by thermogravimetry (TG), differential thermal gravimetry (DTG), and differential thermal analysis (DTA) under nonisothermal conditions in an argon atmosphere. Different methods (Kissinger, Flynn-Wall–Ozawa (FWO), Friedman isoconversion methods, and nonlinear least‐squares (NLSQ) estimation method) have been used to analyze the thermal degradation process and determine the apparent kinetic parameters. The methods produce similar results in terms of activation energy estimations. Nevertheless, the NLSQ method has several advantages over the other methods in terms of both characterizing the activation energy and modeling the thermal degradation—i.e., including this model in a resin degradation process simulation. However, it is interesting to combine the NLSQ method with other isoconversion methods: they can reflect the dependence and variability of the activation energies during pyrolysis processes, while providing a good starting point for a nonlinear procedure, especially with respect to the activation energy E. This work is the first step (apparent kinetic reaction) of complete simulation of experimental oven of degradation of epoxy resin coating of impregnate nuclear fuel sample
- …
