334 research outputs found
Comment on "How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?" by Y. Tang et al., Hydrol. Earth Syst. Sci., 10, 289?307, 2006
International audienceNo abstract available
Multiobjective inverse parameter estimation for modelling vadose zone water movement
Inverse modelling techniques for estimating unsaturated
soil hydraulic parameters have become
increasingly common in the past two decades. In
contrast to single-objective parameter estimation
which yields a single set of "best fit" parameters,
multiobjective parameter estimation results in a
number of Pareto optimal solutions which allow
the analysis of the trade-off between different,
sometimes conflicting, model objectives.
In this study, modelling tools for identification of
Pareto optimal sets of vadose zone water transport
parameters are presented utilizing the numerical
water and solute transport model HYDRUS-1D.
Root-mean-square error (RMSE) values are calculated
to measure the fit of the simulated and observed
pressure head data at three different depths
at a vadose zone of volcanic origin in New Zealand
Generic dialogue modeling for multi-application dialogue systems
We present a novel approach to developing interfaces for multi-application dialogue systems. The targeted interfaces allow transparent switching between a large number of applications within one system. The approach, based on the Rapid Dialogue Prototyping Methodology (RDPM) and the Vector Space model techniques from Information Retrieval, is composed of three main steps: (1) producing finalized dia
logue models for applications using the RDPM, (2) designing an application interaction hierarchy, and (3) navigating between the applications based on the user's application of interest
Towards reduced uncertainty in catchment nitrogen modelling: quantifying the effect of field observation uncertainty on model calibration
International audienceThe value of nitrogen (N) field measurements for the calibration of parameters of the INCA nitrogen in catchment model is explored and quantified. A virtual catchment was designed by running INCA with a known set of parameters, and field "measurements" were selected from the model run output. Then, using these measurements and the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), four of the INCA model parameters describing N transformations in the soil were optimised, while the measurement uncertainty was increased in subsequent steps. Considering measurement uncertainty typical for N field studies, none of the synthesised datasets contained sufficient information to identify the model parameters with a reasonable degree of confidence. Parameter equifinality occurred, leading to considerable uncertainty in model parameter values and in modelled N concentrations and fluxes. Fortunately, combining the datasets in a multi-objective calibration was found to be effective in dealing with these equifinality problems. With the right choice of calibration measurements, multi-objective calibrations resulted in lower parameter uncertainty. The methodology applied in this study, using a virtual catchment free of model errors, is proposed as a useful tool foregoing the application of a N model or the design of a N monitoring program. For an already gauged catchment, a virtual study can provide a point of reference for the minimum uncertainty associated with a model application. When setting up a monitoring program, it can help to decide what and when to measure. Numerical experiments indicate that for a forested, N-saturated catchment, a fortnightly sampling of NO3 and NH4 concentrations in stream water may be the most cost-effective monitoring strategy. Keywords: INCA, nitrogen model, parameter uncertainty, multi-objective calibration, virtual catchment, experimental desig
Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations
Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO)
Ensemble evaluation of hydrological model hypotheses
It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a “leaking” of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error
Embracing Equifinality with Efficiency:Limits of Acceptability Sampling Using the DREAM(LOA) algorithm
This essay illustrates some recent developments to the DiffeRential Evolution Adaptive Metropolis (DREAM) MATLAB toolbox of Vrugt, 2016 to delineate and sample the behavioural solution space of set-theoretic likelihood functions used within the GLUE (Limits of Acceptability) framework (Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2006 ; Beven et al., 2014). This work builds on the DREAM(ABC) algorithm of Sadegh and Vrugt, 2014 and enhances significantly the accuracy and CPU-efficiency of Bayesian inference with GLUE. In particular it is shown how lack of adequate sampling in the model space might lead to unjustified model rejection
Inverse modelling of cloud-aerosol interactions – Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach
This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov chain Monte Carlo (MCMC) algorithm to an adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis tools to investigate the global sensitivity of a cloud model to input aerosol physiochemical parameters. Using numerically generated cloud droplet number concentration (CDNC) distributions (i.e. synthetic data) as cloud observations, this inverse modelling framework is shown to successfully estimate the correct calibration parameters, and their underlying posterior probability distribution. <br></br> The employed analysis method provides a new, integrative framework to evaluate the global sensitivity of the derived CDNC distribution to the input parameters describing the lognormal properties of the accumulation mode aerosol and the particle chemistry. To a large extent, results from prior studies are confirmed, but the present study also provides some additional insights. There is a transition in relative sensitivity from very clean marine Arctic conditions where the lognormal aerosol parameters representing the accumulation mode aerosol number concentration and mean radius and are found to be most important for determining the CDNC distribution to very polluted continental environments (aerosol concentration in the accumulation mode >1000 cm<sup>−3</sup>) where particle chemistry is more important than both number concentration and size of the accumulation mode. <br></br> The competition and compensation between the cloud model input parameters illustrates that if the soluble mass fraction is reduced, the aerosol number concentration, geometric standard deviation and mean radius of the accumulation mode must increase in order to achieve the same CDNC distribution. <br></br> This study demonstrates that inverse modelling provides a flexible, transparent and integrative method for efficiently exploring cloud-aerosol interactions with respect to parameter sensitivity and correlation
- …