13 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Get PDF
    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associate canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm.yr−1 (water-limited forests) and to radiation otherwise (light-limited forests); on the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. Precipitation first-order control indicates an overall decrease in tropical forest productivity in a drier climate.Peer reviewe

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≄20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites

    No full text
    Our objectives were to develop a method that would be appropriate for long-term ecological studies, but that would permit rapid surveys to evaluate biotic complementarity and land-use planning in Amazonia. The Amazon basin covers about 7 million kmÂČ. Therefore, even a sparse coverage, with one sample site per 10.000 kmÂČ, would require about 700 sampling sites. Financial considerations limit the number of sites and investment at each site, but incomplete coverage makes evaluation of biotic complementarity difficult or impossible (Reddy &amp; DĂĄvalos 2003). Our next challenge is to install similar systems throughout Amazonia. The cost, based on modification of Al Gentry's original design is moderate (less than US$ 50.000 per site if it is not necessary to immediately identify all vascular plants in plots) and we can obtain RAP results for most taxa in the short term at much lower cost. However, biological surveys will only be relevant if the local people participate and the surveys serve as much to teach the local communities about the value of their natural resources as they serve to teach the international community about biodiversity. Therefore, we want to see each site run as a long-term ecological research project by local people and institutions. Biological surveys are an important tool in land-use planning, but only the local people can implement those plans

    Influences of forest structure and landscape features on spatial variation in species composition in a palm community in central Amazonia

    No full text
    The mechanisms that maintain palm species diversity in tropical rain forests are still debated. Spatial variation in forest structure produces small-scale environmental heterogeneity, which in turn can affect plant survival and reproductive performance. An understanding of how palms respond to variation in forest heterogeneity may help to explain the diversity and structure of their assemblages. We used multivariate ordination statistics and multiple linear models to analyse how palm assemblages are affected by forest structure and landscape features in central Amazonia. In 72 (250×4 m) forest plots distributed over an area of 64 km2, we recorded all seedling and adult palms, and measured topographic and soil variables, and components of forest structure and tree abundance. We found 16976 adults and 18935 seedlings of 46 palm species and five varieties including two morphological forms making a total of 50 botanical entities. Results show that landscape features (altitude, slope, proportions of soil sand and clay) and various components of forest structure (such as degree of forest openness, abundance of forest trees, logs and snags, and leaf litter mass), influence spatial variation in richness, abundance and species composition of palms, creating ecological gradients in palm community composition. Despite the statistically significant effects of environmental variables, most species occurred throughout the full range of the ecological gradients we studied, indicating that there is either relatively weak niche specialization in the palms, or that the competition between the species is mediated by diffuse demographic processes that cannot be evaluated only through studies of species distributions. Copyright © Cambridge University Press 2014

    Multi-taxa responses to climate change in the Amazon

    No full text
    Data and code from 'Multi-taxa responses to climate change in the Amazon forest'. Authors: Carlos A. S. Rodrigues-Filho; FlĂĄvia R. C. Costa; Juliana Schietti; Anselmo Nogueira; Rafael Pereira LeitĂŁo; Juliana Menger; Gabriel Borba; Caian Souza Gerolamo; Stefano S. Avilla; Thaise Emilio; Carolina Volkmer de Castilho; Douglas Aviz Bastos; Elisangela Xavier Rocha; Itanna O. Fernandes; Cintia Cornelius; Jansen Zuanon; Jorge L. P. Souza; Ana C. S. Utta1; Fabricio B. Baccaro</p

    Diversity enhances carbon storage in tropical forests

    Get PDF
    Aim: Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning, and no such study exists for the tropics. Location: Neotropics. Methods: We relate aboveground biomass (AGB) to forest attributes (diversity and structure) and environmental drivers (annual rainfall and soil fertility) using data from 144,000 trees, 2050 forest plots and 59 forest sites. The sites span the complete latitudinal and climatic gradients in the lowland Neotropics, with rainfall ranging from 750 to 4350mmyear-1. Relationships were analysed within forest sites at scales of 0.1 and 1 ha and across forest sites along large-scale environmental gradients. We used a structural equation model to test the hypothesis that species richness, forest structural attributes and environmental drivers have independent, positive effects on AGB. Results: Across sites, AGB was most strongly driven by rainfall, followed by average tree stem diameter and rarefied species richness, which all had positive effects on AGB. Our indicator of soil fertility (cation exchange capacity) had a negligible effect on AGB, perhaps because we used a global soil database. Taxonomic forest attributes (i.e. species richness, rarefied richness and Shannon diversity) had the strongest relationships with AGB at small spatial scales, where an additional species can still make a difference in terms of niche complementarity, while structural forest attributes (i.e. tree density and tree size) had strong relationships with AGB at all spatial scales. Main conclusions: Biodiversity has an independent, positive effect on AGB and ecosystem functioning, not only in relatively simple temperate systems but also in structurally complex hyperdiverse tropical forests. Biodiversity conservation should therefore be a key component of the UN Reducing Emissions from Deforestation and Degradation strategy. © 2015 John Wiley & Sons Ltd
    corecore