58 research outputs found

    Protein motions and dynamic effects in enzyme catalysis

    Get PDF
    The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle

    Cooperativity and flexibility in enzyme evolution

    Get PDF
    Enzymes are flexible catalysts, and there has been substantial discussion about the extent to which this flexibility contributes to their catalytic efficiency. What has been significantly less discussed is the extent to which this flexibility contributes to their evolvability. Despite this, recent years have seen an increasing number of both experimental and computational studies that demonstrate that cooperativity and flexibility play significant roles in enzyme innovation. This review covers key developments in the field that emphasize the importance of enzyme dynamics not just to the evolution of new enzyme function(s), but also as a property that can be harnessed in the design of new artificial enzymes.The European Research Council has provided financial support under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 306474. This work was also funded by the Feder Funds, Grants from the Spanish Ministry of Economy and Competitiveness (BIO2015-66426-R and CSD2009-00088) and the Human Frontier Science Program (RGP0041/2017). A.P. is a Wenner-Gren Foundations Postdoctoral Fellow and S. C. L. K. is a Wallenberg Academy Fellow

    Mechanisms of Intramolecular Communication in a Hyperthermophilic Acylaminoacyl Peptidase: A Molecular Dynamics Investigation

    Get PDF
    Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface

    Molecular Dynamics of Mesophilic-Like Mutants of a Cold-Adapted Enzyme: Insights into Distal Effects Induced by the Mutations

    Get PDF
    Networks and clusters of intramolecular interactions, as well as their “communication” across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme

    Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

    Get PDF
    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [H-1, C-13]-D-glucose in similar to 100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using C-13 TOCSY NMR spectroscopy, as was recently demonstrated (Often, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure H-1 CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-delta 1 and Thr-gamma 2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong C-13 scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone N-15 CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the H-1 line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 +/- 0.5) x 10(3) per second (i.e., tau(ex) = 64.7 +/- 1.9 mu s). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by H-1 CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone N-15 relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins
    corecore