82 research outputs found

    Long-term forecast of thermal mortality with climate warming in riverine amphipods

    Get PDF
    Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.ANID PIA/BASAL FB0002Fondo Nacional de Desarrollo Científico y Tecnológico, Grant/Award Number: 1211113Ministerio de Ciencia e Inovación, Grant/Award Number: Juan de la Cierva-formación FellowshipNederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/ Award Number: 016.161.32

    Вплив структури фонових знань перекладача на інтерпретацію міфологічних алюзій

    Get PDF
    L.M.Chernovaty, T.K.Varenko. An impact of the interpreters’ background knowledge structure upon their interpretation of mythological allusions. Basing upon an experimental research into the ways English sentences containing mythology-related allusions are interpreted into Ukrainian, the author argues for the necessity to include the corresponding elements into the subject-matter of the interpreter-training course to provide for the acquisition of background knowledge in mythology and folklore related to the cultures contacting in the process of interpreting. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1128

    Trait-based ecology at large scales: Assessing functional trait correlations, phylogenetic constraints and spatial variability using open data

    Get PDF
    The growing use of functional traits in ecological research has brought new insights into biodiversity responses to global environmental change. However, further progress depends on overcoming three major challenges involving (a) statistical correlations between traits, (b) phylogenetic constraints on the combination of traits possessed by any single species, and (c) spatial effects on trait structure and trait–environment relationships. Here, we introduce a new framework for quantifying trait correlations, phylogenetic constraints and spatial variability at large scales by combining openly available species’ trait, occurrence and phylogenetic data with gridded, high‐resolution environmental layers and computational modelling. Our approach is suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding to a life‐history model with axes of resistance, resilience and resource use, as relatively unaffected by correlations and phylogenetic constraints. Trait structure responded more consistently to environmental variation than taxonomic structure, regardless of location. A re‐analysis of existing data on macroinvertebrate communities of European alpine streams supported this conclusion, and demonstrated that occurrence‐based functional diversity indices are highly sensitive to the traits included in their calculation. Overall, our findings suggest that the search for quantitative trait–environment relationships using single traits or simple combinations of multiple traits is unlikely to be productive. Instead, there is a need to embrace the value of conceptual frameworks linking community responses to environmental change via traits which correspond to the axes of life‐history models. Through a novel integration of tools and databases, our flexible framework can address this need

    Plant Dispersal in a Temperate Stream by Fish Species With Contrasting Feeding Habits: The Role of Plant Traits, Fish Diet, Season, and Propagule Availability

    Get PDF
    Whether fish mediate plant dispersal in temperate freshwaters is largely unknown. A prerequisite for successful dispersal is ingestion and surviving the journey in the intestinal tract. This study asks whether plant propagules are being ingested under field conditions and what factors shape dispersal potential, focusing on differences across plant species and propagule form (seed or fragment), seasonal differences and plant and fish traits that facilitate dispersal. We focused on three common fish species reported to differ in foraging strategy. Fish were caught monthly over a 1-year period in a Dutch lowland stream. Before they were returned to the stream, fish were kept in water for 26 h and their feces were collected, resulting in 150 fecal samples. Excreted animal remains and plant propagules were identified and enumerated. Plant propagules were tested for viability. In total, 88,579 vegetative fragments of vascular plants, 316 of mosses and 14 of charophytes were identified. Viability was low (<<1%) except for mosses (53.5%). Roach (Rutilis rutilis) and Rudd (Scardinius erythrophthalmus) displayed a preference for filamentous algae and certain plant species (i.e., Elodea nuttallii and Lemna sp.), likely because they were more palatable. Of the 1,787 generative propagules of vascular plants that were identified, 120 germinated (6.7%), representing 15 species. Betula pendula, Juncus effusus, and Poa trivialis were most abundant. Tench (Tinca tinca) egested most seeds, despite being the least herbivorous species. Particularly, germination was high for seeds that were light (<1.07 mg) and that floated for a long time. Our results show that fish do ingest plant propagules under field conditions and that fish can contribute to vegetative dispersal of vascular plants and several aquatic and riparian moss species. Ingestion of propagules is affected by water temperature and season, their availability in the propagule bank, and their palatability. Both seed traits (related to buoyancy, size and hardness) and fish traits (related to size and identity) were important. Despite substantial dietary overlap, the three fish species displayed subtle differences in their diet, and together can act as vectors for the dispersal of a range of plant and moss species of freshwater systems

    Foundation species enhance food web complexity through non-trophic facilitation

    Get PDF
    Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species’ food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.</p

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
    corecore